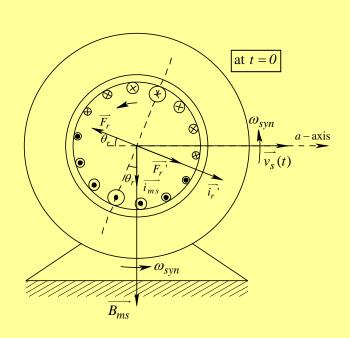
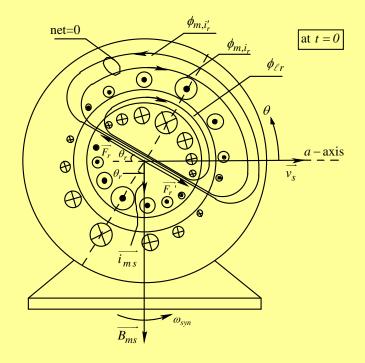
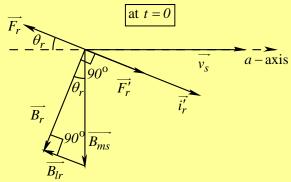

Induction Motors: Balanced, Sinusoidal Steady State Operation

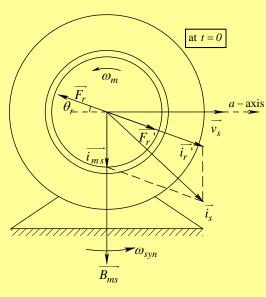

- ◆ Generator Operation
- ◆ Including Rotor Leakage Inductance
- ◆ Per-Phase Equivalent Circuit
- ◆ Determining Equivalent Circuit parameters

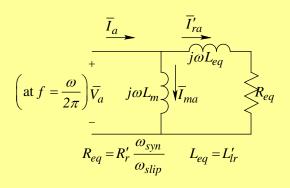

Generator (Regenerative Braking) Mode

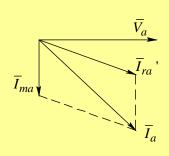


- For generation or for braking in either case rotor speed exceeds synchronous speed,
 - $\omega_{\rm m} > \omega_{\rm syn}$
- \Box $\omega_{\text{slip}} < 0$
- Bar voltage polarities reversed
- Rotor currents and mmf reversed
- Reflected rotor currents and mmf reversed
- Torque reversed

Rotor Leakage Inductance

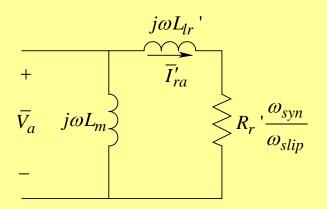


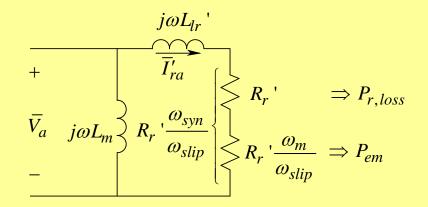



Rotor Leakage Inductance (cont...)

- ☐ Effect of rotor leakage inductance is to reduce T_{em} at high slip
- Rotor leakage inductance is often neglected when motor is operating near synchronous speed (below the rated torque)

Per-Phase Equivalent Circuit

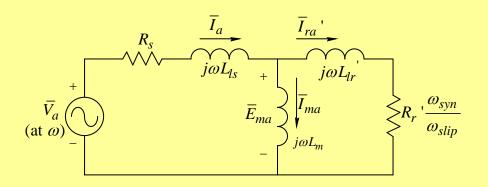

Space Vectors

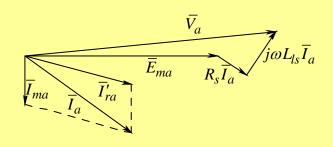

Equivalent Circuit

Phasor Diagram

- ☐ Includes rotor leakage inductance
- ☐ Does not include stator leakage inductance or resistance
- ☐ R_{eq} depends on slip

Power Into Rotor – Power Lost In Rotor – Power Out Of Rotor

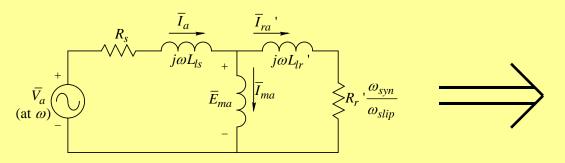



Power in resistor is power into the rotor circuit

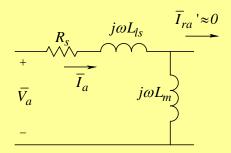
Resistor split to indicate rotor loss and mechanical power

- Power in equivalent resistance represents power entering rotor across air gap
- ☐ Depending on slip, some or all of this power becomes losses in the rotor

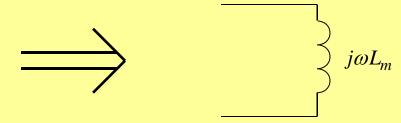
Stator Winding Resistance and Leakage Inductance


Equivalent Circuit

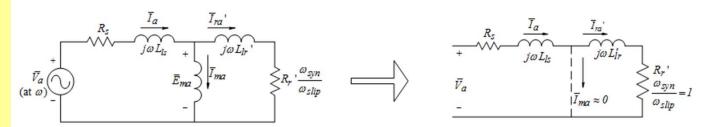
Phasor Diagram


Motor Tests

- \Box DC Resistance Test (R_s)
- lue No Load Test $(L_{_m})$
- lacksquare Blocked Rotor Test $(R_r',\,L_{ls},\,L_{lr}')$


No Load Test (L_m)

Equivalent Circuit


Equivalent Circuit under no load conditions $(\omega_{slip} = 0 : R_{eq} = \infty)$

Approximate Circuit $(L_m >> L_l)$ (R_s negligible)

Under no load conditions the equivalent circuit is dominated by the magnetizing inductance

Blocked Rotor Test (L₁)

Equivalent Circuit

Approximate Circuit With Rotor Blocked $(R_{eq} << \omega L_m)$ and $(\omega L_{\ell r} << \omega L_m)$

- ☐ With the rotor blocked, the magnetizing inductance is nearly shorted out and can be neglected
- \square Measurements give real power (into R_s and R'_r) and reactive power (into L_{ls} and L'_{lr})
- \square R'_r can be found since R_s was previously determined through the DC test
- \square To find L_{ls} and L'_{lr} we can often assume that $L_{ls} = \frac{2}{3}L'_{lr}$

Summary

- ◆ Generator Operation
- ◆ Including Rotor Leakage Inductance
- ◆ Per-Phase Equivalent Circuit
- ◆ Determining Equivalent Circuit parameters