## Review of Basic Electric Circuits

- Convention and Symbols
- Use of Phasors
- Power, Reactive Power, Power Factor
- Inductive and Capacitive Loads

## Conventions

- ◆ MKS (SI) Units
- ◆ lower case *v* and *i* for instantaneous quantities
- ◆ upper case *V* and *I* for average and rms
- voltage and current subscripts



voltage polarities and current directions

# Phasor Domain Representation for Sinusoidal Steady State AC





$$v(t) = \hat{V} \cos(\omega t)$$

$$\Leftrightarrow$$

$$\overline{V} = \hat{V} \angle 0$$

$$v(t) = \hat{V} \cos(\omega t) \qquad \Leftrightarrow \qquad \overline{V} = \hat{V} \angle 0$$
$$i(t) = \hat{I} \cos(\omega t - \phi) \qquad \Leftrightarrow \qquad \overline{I} = \hat{I} \angle - \phi$$

$$\Leftrightarrow$$

$$\bar{I} = \hat{I} \angle - \phi$$

## Time-Domain Analysis

$$\begin{array}{ccc}
& & & & \\
& & & \\
v(t) & & \\
& = \hat{V}\cos(\omega t) & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

$$Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C}\int i(t) \cdot dt = \hat{V}\cos(\omega t)$$

## **Phasor Domain Analysis**





$$Z = R + j X_L - j X_C = |Z| \angle \phi$$

$$|Z| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$
 ;  $\phi = tan^{-1} \left| \frac{\left(\omega L - \frac{1}{\omega C}\right)}{R} \right|$ 

$$i(t) = \frac{\hat{V}}{|Z|} \cos(\omega t - \phi) \quad \Leftrightarrow \quad \bar{I} = \frac{\bar{V}}{|Z|} = \frac{\hat{V}}{|Z|} \angle - \phi$$

#### Instantaneous Power





- $\blacklozenge$  v and i in phase  $(\phi_v = \phi_i)$
- power flows in one direction
- maximum average power for given V and I

$$v(t) = \hat{V}\cos(\omega t + \phi_{v})$$

$$i(t) = \hat{I}\cos(\omega t + \phi_i)$$



- $\blacklozenge$  v and i out of phase $(\phi_v \neq \phi_i)$
- power flow reverses periodically
- average power lower than maximum possible

# Real Power, Reactive Power and Power factor

◆ Complex Power

$$S = \overline{V} \ \overline{I}^*$$
 (*S* is a complex number)  
=  $V \ I \angle (\phi_v - \phi_i) = V \ I \angle \phi$   
 $S = P + jQ = |S| \angle \phi$ 

Real Power (average power)

$$P = V I \cos \phi$$
 [W]

◆ Reactive Power

$$Q = V I \sin \phi$$
  $[VAR]$ 

Apparent Power

$$|S| = \sqrt{P^2 + Q^2} = VI \qquad [VA]$$

\*Power Factor  $PF = \frac{P}{|S|} = \frac{P}{VI} = \cos \phi$ 







## **Inductive Load**

- $\square$  The impedance is  $Z=|Z|\angle\phi$  where  $\phi$  is positive
- $\square$  The current lags the voltage by the impedance angle  $\phi$
- ☐ Corresponds to a lagging power factor of operation
- lacksquare In the power triangle, the same angle  $oldsymbol{\phi}$  relates P,Q and |S|
- ☐ An inductive load draws positive reactive power (VARs)
- ☐ Most loads are inductive, particularly motors and transformers

# Summary

#### Review of Basic Electric Circuits

- Convention and Symbols
- Use of Phasors
- Power, Reactive Power, Power Factor
- Inductive and Capacitive Loads