Transformers

- Transformers
 - Basic Principle
 - Equivalent Circuit
 - Parameter Estimation
- Permanent Magnets

Transformers

- ☐ Tightly coupled coils (low leakage inductance)
- ☐ Essential for power transmission and distribution
- ☐ Helpful in understanding induction machines

Transformers - Development

☐ Single coil

Assuming zero resistance and zero leakage inductance

$$e_1 = N_1 \frac{d\phi_m}{dt}$$

 ϕ_m determined completely by applied voltage:

$$\phi_m = \frac{1}{N_1} \int e_1 \, d\tau$$

☐ Two coils

$$e_2(t) = N_2 \frac{d\phi_m}{dt} \qquad \& \ e_1(t) = N_1 \frac{d\phi_m}{dt}$$

$$\Rightarrow \frac{e_1(t)}{e_2(t)} = \frac{N_1}{N_2}$$

&
$$e_I(t) = N_I \frac{d\phi_m}{dt}$$

Transformer Model

- ☐ Dot polarity
- ☐ Magnetizing inductance

Transformer with Secondary Loaded

 $\Box\phi_m$ determined by e_1 alone hence i_2 in secondary induces i_2 ' in the primary such that

$$N_1 i_2' = N_2 i_2$$

$$\Rightarrow \frac{i_2'}{i_2} = \frac{N_2}{N_1}$$

$$i_{1}(t) = \underbrace{i_{2}'(t)}_{\text{relflected load current}} + \underbrace{i_{m}(t)}_{\text{magnetizing current}}$$

Real Transformers

- ☐ Add leakages
- ☐ Core loss
 - hysteresis
 - eddy currents
- ☐ Winding resistances

☐ Laminations to reduce eddy current loss

Determining Transformer Model Parameters

- ☐ Open circuit test
 - lacktriangle Core loss, R_{he}
 - lacktriang Magnetizing inductance, L_m
- ☐ Short circuit test
 - lacktriangle Winding resistance, R_1, R_2
 - lacktriangle Leakage inductance, L_{l1}, L_{l2}

Open Circuit Test

- ☐ Secondary unloaded (open circuit)
- ☐ Rated voltage applied to primary
- ☐ Measure
 - lacktriangle To find R_{he}

$$R_{he} = \frac{V_{oc}^2}{P_{oc}}$$

lacktriangle To find L_m

$$|R_{he}||jX_m| = \frac{V_{oc}}{I_{oc}}$$
 \bar{V}_{oc}

Short Circuit Test

- ☐ One winding shorted small voltage applied to other winding
- \square Measure V_{SC} , and I_{SC} , and P_{SC}
 - lacktriangle To find R_1 and R_2

$$R_2 = \frac{1}{2} \frac{P_{SC}}{I_{SC}^2} \quad R_1 = R_2 \left(\frac{N_1}{N_2}\right)^2$$

$$\frac{\overline{I_I}}{N_2} \quad R_1 = R_2 \left(\frac{N_1}{N_2}\right)^2$$

lacktriangle To find L_{l1} and L_{l2}

$$|2R_2 + j2X_{l2}| = \frac{V_{SC}}{I_{SC}}$$
 $X_{l1} = X_{l2} \left(\frac{N_l}{N_2}\right)^2$

Permanent Magnets

- ☐ Typically used in smaller motors
- ☐ Applicable power range increasing due to new materials
- ☐ In simplest analysis, treated simply as a source of magnetic flux

Summary

- Transformers
 - Basic Principle
 - Equivalent Circuit
 - Parameter Estimation
- Permanent Magnets