
Solve the Simple RC low-pass using Differential Equations: 

Here is the circuit diagram 

The Kirchoff loop equation is: 
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First solve the Homogeneous Equation to get the Homogeneous “Natural” solution: 
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Differentiating both sides of the equation and multiplying by C 
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The solution to this equation is of the form 
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Simplifying, 
atat aRC −− =  *  or a = 1/RC  

The Homogeneous Solution is therefore: 
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 since the voltage across the capacitor starts at 0 and, 
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But we want the voltage out which is: 
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Substituting, 
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Now we need to find the Particular Solution that is due to the Forcing Function (input) 

Case 1 (t < 0): obviously, the output is again zero. 

Case 2 (0 < t < 1) 

We have that the original input is a constant “ inV ” which was differentiated and became 0 

The output needs to be of the form 
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Substituting into our original differential equation: 
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Since this must be true for all 0 < t < 1, B = 0 (from the t term) and from the constant term 

A also is 0 so  
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Therefore the total solution is 
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