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This is a supplement on the concepts of charge carriers, intrinsic and extrinsic semiconductors, carrier
concentrations, the Fermi-Dirac distribution function and the Fermi level, density of states and the effective
density of states.

1 Review: Charge Carriers in Semiconductors

Remember the energy band diagram of a semiconductor, shown in Figure 1, displaying the conduction and
valence bands and the bandgap.

The electrons in the valence band are bound to the atoms of the crystal. They need to have enough
extra energy to go across the forbidden bandgap to get into the energy levels of the conduction band.

To quantify electron concentration 1 we count the number of electrons in the conduction band per a
1This is a short way of saying ”conduction band electron concentration”, since only the electrons in the conduction band

contribute to conductivity as electrons.

Figure 1:
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unit volume, typically a cm3. This is shown by the symbol n. When the system is in equilibrium, it is
shown by n0.

When an electron leaves the valence band to go to the conduction band, it is essentially breaking free
of its bond, leaving behind an empty state available for another electron in the valence band energy levels.
This empty state is called a ”hole” and effectively behaves like a positively charged particle. The number
of holes in the valence band per unit volume is called ”hole concentration” and shown by the symbol p. In
equilibrium, we use p0.

If, for instance, an external electric field is applied to the material, the electrons in the conduction band
are free to move in the opposite direction of the field2, because there are many states available around them
at their energy level. Under the influence of the same field, electrons in the valence band can also move, but
only if there are available states at their energy level, i.e. available states in the valence band—therefore,
there is a contribution to the conduction in the valence band only if there are holes. Instead of monitoring
the motion of many electrons in the valence band, we consider the effective motion of holes, which is in
the same direction as the electric field, as shown in Figure 2.

Figure 2:

2 Intrinsic and Extrinsic Materials

An intrinsic semiconductor is ideally a perfect crystal. When an electron in an intrinsic semiconductor gets
enough energy, it can go to the conduction band and leave behind a hole. This process is called ”electron-
hole pair (EHP) creation”. For the intrinsic material, since electrons and holes are always created in
pairs,

n = p = ni (1)

where ni is the symbol for ”intrinsic carrier concentration.”
2Responding to the force applied on them by the field.

2



At room temperature, relatively few electrons have enough thermal energy to make this jump. In fact,
approximately one electron per 6.9×1012 silicon atoms does. So the intrinsic carrier concentration in silicon
at room temperature is approximately

ni = 1.45× 1010 [
1

cm3
] silicon, 300 ◦K (2)

Extrinsic semiconductors are made by introducing different atoms, called dopant atoms, into the crystal.
We can get two types of extrinsic material:

1. n-type. The dopant atoms added to the semiconductor crystal in this case are donor atoms.

For silicon, we can use phosphorus (P), arsenic (As) or antimony (Sb) as donors. These are column
V elements, with five electrons in their outermost shell. When these atoms are included in the silicon
crystal, one of the electrons in this shell can easily jump to the conduction band, leaving a positively
charged atom behind. This process is sometimes called “activation” or “ionization” of the donor
atoms. Figure 3 shows the required “activation” energies for these atoms in silicon; you can see that
these are very small compared to the silicon bandgap.

The positively charged donor atom that is left behind after ionization is immobile and does not
contribute to conduction. The electron leaving the atom by ionization does, and is counted in the
electron concentration n. Because the activation energy is low, at room temperature almost all of
the donor atoms included in the crystal will give an electron to the conduction band. So if ND is the
donor concentration, for an n-type material at equilibrium:

n0 ≈ ND [
1

cm3
] (3)

2. p-type. The dopant atoms in this case are acceptor atoms.

For silicon, we can use boron (B), Aluminum (Al) and Gallium (Ga) as acceptors. These are column
III elements, with three electrons in their outermost shell. When these atoms are included in the
silicon crystal, one of the electrons in the silicon valence band can easily jump to the valence shell of
one of the acceptor atoms, leaving a hole behind and making the acceptor atom negatively charged.
Figure 3 shows where the valence shell energy level is for these atoms relative to the silicon valence
band.

The negatively charged acceptor atom after an electron joins its valence shell is immobile and does
not contribute to conduction. The hole left behind by that electron does, and is counted in the hole
concentration p. Because the activation energy is low, at room temperature almost all of the acceptor
atoms included in the crystal will accept an electron from the valence band. So if NA is the acceptor
concentration, for a p-type material at equilibrium:

p0 ≈ NA [
1

cm3
] (4)

3 Law of Mass Action

For both intrinsic and extrinsic materials, at equilibrium:
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Figure 3: Donor and acceptor ionization energy levels. Adapted from Muller & Kamins 1986, not to scale.

n0p0 = n2
i ⇒ n0 =

n2
i

p0
, p0 =

n2
i

n0
(5)

So for an n-type material with only donor atoms3:

n0 = ND , p0 =
n2

i

n0
=

n2
i

ND
(6)

And for a p-type material with only acceptor atoms:

p0 = NA , n0 =
n2

i

p0
=

n2
i

NA
(7)

3Assuming complete ionization—unless stated otherwise, we will always be making this assumption from now on.
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4 Impurity Compensation

Due to fabrication constraints, in many cases there are both donor and acceptor atoms present in a piece
of semiconductor crystal. The eventual type of material and electron/hole concentrations depend on which
type of dopant atom is more populous. The behavior is detailed in Table 1.

If ND > NA... If NA > ND

Material n-type p-type

Electron concentration n0 = ND −NA n0 = n2
i

p0

at equilibrium

Hole concentration p0 = n2
i

n0
p0 = NA −ND

at equilibrium

Table 1:

5 The Fermi-Dirac Distribution Function and Fermi Level

The conduction band in a piece of semiconductor consists of many available, allowed, empty energy levels.
When calculating how many electrons will fill these levels and thus be counted in n, contributing to
conductivity, we consider two factors:

• How many energy levels are there within a given range of energy, in our case the conduction band,
and

• How likely is it that each level will be populated by an electron.

The likelihood in the second item is given by a probability function called the Fermi-Dirac distribution
function. f(E) is the probability that a level with energy E will be filled by an electron, and the expression
is:

f(E) =
1

1 + exp( (E − EF )/(kBT ) )
(8)

where kB is Boltzmann’s constant, 8.62×10−5 [eV/K], and T is the temperature in degrees Kelvin.
EF is called the Fermi energy or Fermi level. It is determined as the energy point where the probability

of occupancy by an electron is exactly 50%, or 0.5:

f(EF ) =
1

1 + exp( (EF − EF )/(kBT ) )
=

1
1 + exp(0)

=
1
2

(9)

5.1 Meaning of (1− f(E))

Since fE1 is the probability that the energy level E1 will be filled by an electron, (1−fE1) is the probability
that the energy level E will be empty. Or, equivalently, if E1 is in the valence band, (1 − f(E1)) is the
probability that the energy level E1 will have a hole.
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5.2 Symmetry of f(E) around EF

It can easily be shown that
f(EF + E) = 1− f(EF − E) (10)

5.3 Fermi Level in Intrinsic and Extrinsic Semiconductors

In an intrinsic semiconductor, n = p. If we use the band-symmetry approximation, which assumes that
there are equal number of states in equal-sized energy bands at the edges of the conduction and valence
bands, n = p implies that there is an equal chance of finding an electron at the conduction band edge as
there is of finding a hole at the valence band edge:

f(EC) = 1− f(EV ) (11)

From Eqn. 10 we can deduce that the Fermi level EF must be in the middle of the bandgap for an
intrinsic semiconductor, as seen in Figure 4. In fact, this level is called the “intrinsic Fermi level” and
shown by Ei:

Ei = EC − Eg/2 = EV + Eg/2 (12)

where Eg is the bandgap energy.
For an n-type semiconductor, there are more electrons in the conduction band than there are holes in

the valence band. This also implies that the probability of finding an electron near the conduction band
edge is larger than the probability of finding a hole at the valence band edge. Therefore, the Fermi level is
closer to the conduction band in an n-type semiconductor:

Figure 4:
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Figure 5: The extrinsic Fermi levels. The curvature of the Fermi-Dirac distribution function is exaggerated
to emphasize the difference between f(EC) and 1− f(EV ) in the n-type and p-type materials.

Material type Relationships

n-type EF > Ei

EC − EF = Eg

2 − (EF − Ei)

p-type EF < Ei

EF − EV = Eg

2 − (Ei − EF )

Table 2:

For a p-type semiconductor, there are more holes in the valence band than there are electrons in the
conduction band. This also implies that the probability of finding an electron near the conduction band
edge is smaller than the probability of finding a hole at the valence band edge. Therefore, the Fermi level
is closer to the valence band in an n-type semiconductor.

The following relationships summarize these last points:

n− type : f(EC) > (1− f(EV )) ⇒ |EC − EF | < |EF − EV | ⇒ EF > Ei (13)

p− type : f(EC) < (1− f(EV )) ⇒ |EC − EF | > |EF − EV | ⇒ EF < Ei (14)

Figure 5 shows the situation for extrinsic materials.
Finally, since the bandgap energy is a constant, with Eg = EC −EV , the relationship between Eg, Ei,

EC , EV and EF can be deduced also by looking at Figure 5. Table 2 summarizes these relationships.
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6 Effective Density of States and the Carrier Concentrations

The first factor mentioned in Section 5, how many energy states are there available for electrons in the
conduction band4, is described by a density-of-states function, N(E). The expression N(E)dE gives the
number of states in the energy range [E, E + dE]. To find the total number of electrons in the conduction
band, we multiply this density of states with the probability that each energy level will have an electron
occupying it (f(E)) and integrate across the conduction band.

However, assuming that the Fermi level is far away enough from the conduction band edge (|EC−EF | >
4kBT ), we can consider all the available energy levels in the conduction band to be gathered right at the
band edge. In doing so, we are defining an effective density of states, shown with NC for the conduction
band and NV for the valence band. Then, in the conduction band, all we have to do to find the number
of electrons per unit volume is to count this number of states at the band edge per unit volume (NC) and
multiply it with the probability that a state at that level will be filled (f(EC)):

n0 = NCf(EC) = NC
1

1 + exp( (EC − EF )/(kBT ) )
(15)

If the assumption |EC − EF | > 4kBT holds, we can also approximate the Fermi-Dirac distribution
function with the Boltzmann distribution function:

f(EC) =
1

1 + exp( (EC − EF )/(kBT ) )
≈ exp(−(EC − EF )/(kBT ) ) (16)

In an n-type semiconductor, if we know the doping level ND, we know we can say n0 = ND; therefore,
using the Boltzmann approximation:

n0 = ND = NC exp(−(EC − EF )/(kBT ) ) (17)

Similarly, for the holes in the valence band, we take the effective density of states (NV ) and multiply
it with the probability that a state at that level will be empty ( (1− f(EV )) ):

p0 = NV ( 1− f(EV ) ) = NV exp(−(EF − EV )/(kBT ) ) , (18)

once again using the Boltzmann approximation for f(EV ).

4We will later also look at how many states are there available for holes in the valence band.
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