Conductor	Stranding	Conductor Temp. = 75°C				Conductor Temp. = 100°C			
		Ambient = 25°C		Ambient = 40°C		Ambient = 25°C		Ambient = 40°C	
		No Wind	Wind	No Wind	Wind	No Wind	Wind	No Wind	Wind
6	7	60	103	46	85	77	124	67	111
4	7	83	138	63	114	107	166	92	148
2	7	114	185	86	152	148	223	128	199
1	7	134	214	101	175	174	258	150	230
1/0	7	157	247	118	203	204	299	176	266
2/0	7	184	286	139	234	240	347	207	309
3/0	7	216	331	162	271	283	402	243	358
4/0	7	254	383	190	313	332	466	286	414
250	7	285	425	213	347	373	518	321	460
250	19	286	427	214	348	375	519	322	462
266.8	7	298	443	223	361	390	539	335	479
266.8	19	299	444	224	362	392	541	337	481
300	19	325	479	243	390	426	584	367	519
336.4	19	351	515	262	419	461	628	397	559
350	19	361	527	269	428	474	644	408	572
397.5	19	394	571	293	464	517	697	445	619
450	19	429	617	319	501	564	755	485	671
477	19	447	640	332	519	588	784	506	697
477	37	447	641	333	520	589	785	507	697
500	19	461	658	342	534	606	805	521	716

From table (slide 1, lecture 15) we find the constructor site to be 1/0
a) Repistance 060th per conductor
from table live get
$$k'_{svc} = 0.1827 \frac{\Omega}{1000 \text{ ft}}$$

(Reduce 14, slides) $R_{152} = 0.2002 \frac{\Omega}{1000 \text{ ft}}$
a) 60°C the Korstance will be $R_{60*c} = R_{502} + \frac{R_{77} - R_{50}}{15 - 50} (60 - 50)$
 $R_{105c} = 0.1837 + \frac{0.0165}{25} \cdot 10 = 0.1905 \frac{\Omega}{1000}$
in S1 units: $1 \text{ ft} = 12 \text{ in} = 12 \cdot 25 \cdot 4 \text{ mm} = 304.8 \text{ mm} = 0.3048 \text{ m}$
 $s = 250 \text{ ft}$ $R_{60*c} = \frac{0.1903 \cdot 2000 \text{ ft}}{10000 \text{ ft} 0.3048 \frac{M}{24}} = 0.6243 \text{ m} \text{ s} - M \text{ m}$
or in Ω /mile $R_{60*c} = 0.6243 \frac{M}{M} \text{ Mos} 3.344 \frac{M}{M} = 1.005 \frac{\Lambda}{1000 \text{ ft}}$
b.) In ductance (per conductors)
 $L_1 - \frac{M}{T} \left(\frac{14}{4} + 0 \frac{M}{T}\right) = 2 \cdot L_1' = 2 \cdot \frac{M_0}{277} \ln \frac{D}{670R}$
GRB (from table) = 0.0111 ft
 $D = 3 \text{ m} = 3 \text{ m} \frac{1}{0.3048 \frac{M}{24}} = 5.843 \text{ ft}$
 $L_1' = \frac{2K7110^{-7}}{277} \cdot \ln \frac{5.843}{0.011} = 1.358^{-} \mu \text{ Hm}^{-1}$
Reactance $X_1' = 2\pi \text{ ft} \cdot \frac{L_1'}{60} = 2\pi 60 \cdot 2.715 \approx 10.24 \text{ m} \cdot \Omega + 8.226 \frac{M}{10.16}$
 $Reactance X_1' = 2\pi \text{ ft} \cdot \frac{L_1'}{60} \cdot \log \frac{D}{60} \log \frac{5.843}{0.011} \approx 0.8236 \frac{M}{10.16}$

$$Impedance of line (both competence) = 2(R'+jwX) = 2(1.005+j0.8236) = (2.01+j1.647) = (2.01+j1.67) = (2.01+j1.67) = (2.0$$

