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Electric Motors

Three basic types of motors
Synchronous, SM
Induction (asynchronous), IM
DC motors

In the past: preferred for variable speed applications
Decreasing in popularity; replaced by combination of IM and power 
electronic variable speed drive (VSD)

Applications
SM: largest power ratings, e.g. pumps for hydro power plant, 
electric ship propulsion, steel mills (with VSD) 
IM: “workhorse” of the power industry, from fractional kW to MW 
ratings, e.g. air conditioner (compressor, fan), elevator, crane, 
electric vehicle (with VSD)
DC: low power, pure DC applications such as cars, also universal
motor (for DC and AC), 
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Synchronous Motor (SM)
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Motor
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Generator: source convention, positive power leaves the machine
Motor: load convention, positive power enters the machine
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Synchronous Motor (SM)

( )sin

R S

R Net

R Net

kB B

kB B
kB B

τ

τ
τ δ

= ×

= ×

=
Motor
Leading PF

Generator
Lagging PF

Fundamentals of Power Systems Lecture 17 4

SM Loading Characteristic, IF = const
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Neglecting losses, Vφ = const.

Constant field current: EA = const.
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SM Reactive Power Characteristic,
P = const
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Neglecting losses, Vφ = const.

Application:
Providing reactive power 
for compensating other 
inductive loads
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SM Torque-Speed Characteristic
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Induction (asynchronous) Motor (IM)

Stator (Armature)
3-phase winding, 
same as SM

Rotor
3-phase (or n-phase) winding,
a) terminated at slip rings
b) Short circuited, i.e. squirrel 

cage rotor
Slip rings
Allow electrical 
connection to rotor circuit
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Induction (asynchronous) Motor (IM)

Balanced 3-phase stator currents produce a magnetic field of 
constant magnitude BS which rotates with the synchronous speed 
ωsync
If the rotor is not rotating (still stand, or locked rotor) a voltage ELR
of frequency

is induced in the rotor winding
If the rotor is rotating with a speed ωm different from ωsync a voltage

is with frequency 

induced in the rotor winding
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Provided: same number of 
poles in stator and rotor
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IM – Developing a Single-phase 
Equivalent Circuit Model

Stator circuit
a) Winding resistance and 

reactance
b) Magnetizing branch

(magnetization provided 
by stator only!)

Stator ⇔ Rotor
a) Effective turns ratio 

ELR/E1 = aeff
b) Ratio ER/E1 scales 

with rotor speed
c) Change of frequency!

Rotor circuit
Winding 
resistance 
and reactance
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The slip s is the relative (normalized) frequency in the rotor circuit

Locked rotor: s = 1
Rotor slower than synchronous speed: 1 > s > 0
Rotor at synchronous speed: s = 0
Rotor faster than synchronous speed s < 0
Rotor speed reversal: s > 1 

The electrical frequency in the rotor becomes

The mechanical speed of the rotor becomes

IM – The Concept of Slip
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IM – Equivalent rotor circuits (rotor 
short circuited)

Frequency of IR: fR, rotor Frequency of IR: fe, stator

The inductance and resistance values are constant (independent of the 
rotor frequency, except for skin effects).
The rotor reactance, however, scales with the rotor frequency and thus 
with the slip! 
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IM – Equivalent Circuit Model

Stator 
copper 
losses

Rotor 
copper 
losses

represents converted 
mechanical power 

2R
s

All rotor quantities 
are referred to the 
stator side
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IM – Power Flow
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IM – Characteristics

Simplified circuit: 
neglecting core 
losses
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IM – Characteristics
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IM – Torque-Speed Characteristic

s = 0

s ≈ 0.05

s ≈ 0.15

s = 1
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IM – Torque-Speed Characteristic

s = -1
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HW 10

Problem 5-29 in book


