Interpolation



What is Interpolation ?

Given (Xg,Yo), (X{,Y1), «eee-. (X,,Y,), find the value of 'y’ at a
value of X’ that is not given.
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=14.1 Interpolation Problem Statement

sAssume we have a data set consisting of independent data values, x/, and dependent
data values, y7, where /=1, ..., n. We would like to find an estimation function " y(x)
such that " y(x/ ) = yi for every point in our data set. This means the estimation function
goes through our data points.

=Given a new xx, we can interpolate its function value using " y(x* ). In this context,

“y(x)is called an interpolation function. Figure 14.1 shows the interpolation problem
statement.

= For example, our data may consist of (x, y) coordinates of a car over time. Since motion
is restricted to the maneuvering physics of the car, we can expect that the points between
the (x, y) coordinates in our set will be “"smooth” rather than jagged.
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lllustration of the interpolation problem: estimate the value of a function in between data points.



Polynomial Interpolation

= You will frequently have occasions to estimate intermediate
values between precise data points.

= The function you use to interpolate must pass through the

actual data points - this makes interpolation more restrictive
than fitting.

= The most common method for this purpose is polynomial

interpolation, where an (1)t order polynomial is solved that
passes through n data points:

f(X)=a,+a,x+ax"+-+ax"
MATLAB version :

fX)=px"" +px"++p, x+p,



14.2 Linear Interpolation

In linear interpolation. the estimated point is assumed to lie on the line joining the nearest points to
the left and right. Assume, without loss of generality, that the x-data points are in ascending order: that
1S, X; < X;j41.and let x be a point such that x; < x < x;41. Then the linear interpolation at x is

(Vig1 — yi)(x —x;)

V(x) = Vy; +
: = Xig1 — Xxi)

TRY IT! Find the linear interpolation at x = 1.5 basedonthedatax = [0 1 2],y = [1
3 2]. Verify the result using MATLAB'’s function interpl. (See Figure 14.2.)
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FIGURE 14.2
Linear interpolation of the points x = (0, 1,2) and y = (1, 3, 2).




Since 1 < x < 2, we use the second and third data points to compute the linear interpolation.
Plugging in the corresponding values gives
(Vier — Vi)(x —Xx;) 3 (2—=3)(1.5—=1) B

vix)=v + =3+ = 2.
' - (Xie1 — X;) 2—1)

th

>> yvhat = interpl ([0 1 2], [1 3 2], 1.5)
vhat =
2.5000




Determining Coefficients

Since polynomial interpolation provides as many basis functions as
there are data points (77), the polynomial coefficients can be found
exactly using linear algebra.

MATLAB’s built in polyfit and polyval commands can also be used - all
that is required is making sure the order of the fit for 7 data points is
n1.



Direct Method

Given ‘n+1" data points (Xg,Yo), (X1,Y1),eeeeeeeeeens (X1, Yn),
pass a polynomial of order ‘n’ through the data as given
below:

where ag, @y, .cooeeeeiininnnns a, are real constants.
= Set up 'n+1’ equations to find ‘n+1" constants.

= To find the value 'y’ at a given value of X/, simply
substitute the value of 'x’ in the above polynomial.



Example 1

The upward velocity of a rocket is given as a
function of time in Table 1.

Find the velocity at t=16 seconds using the
direct method for linear interpolation.

Table 1 Velocity as a function

Welocity vs. Time
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30 901.67 Figure 2 Velocity vs. time data for the

rocket example



Linear Interpolation
v(t)=a, + at

v(15)=a, +a,(15)=362.78 o

v(20)=a, +a,(20)=517.35 . @/\Q .

Solving the above two equations gives, R
a, = —-100.93 a, = 30.914 Figure 3 Linear interpolation.

Hence
v(t)=—-100.93+30.914t, 15 <t < 20.

v(16)=—100.93 +30.914(16) = 393.7 m/s
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Order
Ist

2nd

Newton Interpolating
Polynomials

Another way to express a polynomial interpolation is to use
Newton’s interpolating polynomial.

The differences between a simple polynomial and Newton’s

interpolating polynomial for first and second order interpolations
are:

Simple Newton
fi(xX)=a,+a,x Si(x)=b,+b,(x—x,)
f,(x)=q, +a2x+a3x2 f,(x)=b,+b,(x—x,)+b3(x—x,)(x—x,)
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Newton’s Divided Difference
Method

Linear interpolation: Given (Xo:Yo). (X, Y1), pass a

linear interpolant through the data
fl(x) — bo +b1(X_ Xo)

¥y
(x5 )

where
bo — 1E(Xo) \
b, — f(Xl) o 1:(XO) (X ¥ )
| =

fifx)

X1 _Xo



Example

The upward velocity of a rocket is given as a function of
time in Table 1. Find the velocity at t=16 seconds using
the Newton Divided Difference method for linear
interpolation.

Velocity ws. Time
1000 T T

Table. Velocity as a
function of time
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30 901.67 Time (3

Figure. Velocity vs. time data
for the rocket example



14

Linear Interpolation

V(t) = by +by (t—t,)

t, =15, v(t,) = 362.78
t, = 20, v(t,) = 517.35
b, =Vv(t,) =362.78

p, = YW =V) 55 914
tl _to

517.35 550

500

400

362.78 45
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Linear Interpolation (contd)

550 ,

517.35,
500 —
Ys
00
f(range) 450 |
f Xdesired)
XX
400 —
362.78 35 | | | | | | |
10 12 14 16 18 20 22 24
ange, X 10

v(t) =b, +b,(tt,)
— 362.78 + 30.914(t —15), 15 < t < 20

At t=16
v(16) = 362.78 + 30.914(16 —15)

= 393.69 m/s



Lagrangian Interpolation

Lagrangian interpolating polynomial is given by
f,(X)= Z L, (x) T (x;)
i=0

where ‘n”in f_(x) stands for the n™ order polynomial that approximates the function y = f (x)

given at (n+1) data points as (X, Yo ) (X.s Yy heeere (X 10 Yo b (X1 Y, ), @nd

Li(X):HX- Y

J#i

L. (x) is a weighting function that includes a product of (n—1) terms with terms of j =i
omitted.
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Example

The upward velocity of a rocket is given as a function of
time in Table 1. Find the velocity at t=16 seconds using
the Lagrangian method for linear interpolation.

Table Velocityasa o Vebdwedme
function of time 900} .
t (s)|v(t) (M/s) 800
0 0 2 600 o
10 227.04 2 s} 0
15 | 362.78 | = o .
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Figure. Velocity vs. time data
17 for the rocket example



Linear Interpolation

1
V(t) = ;) Li (t)V(tl) S0
=L, (t)V(to) +L (t)V(tl) @) ol
t, =15,v(t,) = 362.78
tl — 201 V(tl) — 51735 PR 30,5 1|2 1|4 1|6 l|8 I
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Linear Interpolation (contd)

Lot—t, —t,
L (1) = li_[tO t, to—t1
Lt-t,  t-t,
L= li_[tl Tt
v(t)— —h (t)+ b (1) (36 78) + 15 (517.35)
t, —t, t, — 5—20 ~15
(6)—16 20(36 2.78) + 16 L = (51739
= 0.8(362.78) + 0.2(517.35)
= 393.7 m/s.
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TRY IT! Find the Lagrange basis polynomials forthe datasetx = [0 1 2] andy = [1 3
21. Plot each polynomial (Figure 14.5) and verify the property that P;(x;) = 1 when i = j and
Pi(x;) =0 wheni # j.

(x —x2)(x — x3) (x — D(x —2) 1, .
o - = S(x% —3x +2),
P (X1 — x2)(x1 — x3) (0 — 1)(0—2 2(17 x + 2),

Po(x) = o —xpx —x3) _ (x— O)(x —2) 2 4oy
(X2 — x1)(x2 — Xx3) (1 —0)(1 —2)

Py = _F—w&—x) =0 =D 1.,
(X3 — x1)(x3 — x2) 22— -1 2
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FIGURE 14.5
Lagrange basis polynomials for test data. By design, P;(x;) = 1 when i = j, and P;(x;) = 0 when i # j.

== ¥ = [0 1 27;

== Y = [1 3 2];

= P11 o= @ (x) LBw (. T2 Jwx 4+ 2 ;
== P2o= @ (=) . "2+ Pwx;

== P33 = [@{x) Lhwx(xl. T2 — =) ;

== = —1:0.1:3;

>
=>> plot(x, Plix), 'b', =, P2(=x), '=', =, P3(x}, "g")

== hold on

== plot (¥, ones(size (X))}, '"ko', X, zeros(size (X)), 'ka')
> grid on

== title('Lagrangs Basis Polvnomials"'")

== xlabel("=x")

== ylabel {"vw")
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TRY IT! For the previous example, compute and plot the Lagrange polynomial (Figure 14.6) and
verify that it goes through each of the data points.

Lagrange Palynomial

4 T T -
1 o Dl
Logrange Pohnomiol

FIGURE 14.6

Resulting plot of previous code. As expected, the Lagrange polynomials goes through each of the data
points.

>> L o= @B(x) Pl(x) + 3xP2(x) + 2+P3(x);

>> plot (X,Y, 'ro', x, L(x), 'b"}

== grid on

>> title('Lagrange Polynomial')

»> xlabel ('x")

>> ylabel('y")

>> legend('Data', 'Lagrange Polynomial')
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Extrapolation

s Extrapolation is the
process of estimating a
value of A x) that lies
outside the range of the
known base points x;, X,
ey X

= Extrapolation represents
a step into the unknown,
and extreme care should
be exercised when
extrapolating!
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