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Open Methods

• Open methods differ from bracketing methods, in 

that open methods require only a single starting 

value (NR).

• Used in computer programs today to solve 

extremely complicated equations

• Open methods may diverge as the computation 

progresses, but when they do converge, they 

usually do so much faster than bracketing methods. 
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Graphical Comparison of Methods

a) Bracketing method

b) Diverging open method

c) Converging open method - note speed!
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Newton-Raphson Method
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Figure 1 Geometrical illustration of the Newton-Raphson method.
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Derivation 
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Figure 2 Derivation of the Newton-Raphson method.
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Algorithm for Newton-
Raphson Method
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Step 1

)(xf Evaluate symbolically.
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Step 2
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Use an initial guess of the root,    , to estimate the new 
value of the root,      , as
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Step 3
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Find the absolute relative approximate error        asa
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Step 4

Compare the absolute relative approximate error  
with the pre-specified relative error tolerance     .  

Also, check if the number of iterations has exceeded 
the maximum number of iterations allowed. If so, 
one needs to terminate the algorithm and notify the 
user.

s

Is            ?

Yes

No

Go to Step 2 using new 
estimate of the root.

Stop the algorithm

sa 
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Example 1

You are working for ‘DOWN THE TOILET COMPANY’ that 
makes floats for ABC commodes.  The floating ball has a 
specific gravity of 0.6 and has a radius of 5.5 cm.  You 
are asked to find the depth to which the ball is 
submerged when floating in water.

Figure 3 Floating ball problem.
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Example 1 Cont.

The equation that gives the depth x in meters 
to which the ball is submerged under water is 
given by

( ) 423 1099331650 -.+x.-xxf =

Use the Newton’s method of finding roots of equations to find 
a) the depth ‘x’ to which the ball is submerged under water.  Conduct three 

iterations to estimate the root of the above equation. 
b) The absolute relative approximate error at the end of each iteration, and
c) The number of significant digits at least correct at the end of each 

iteration.
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Figure 3 Floating ball problem.



Example 1 Cont.

( ) 423 1099331650 -.+x.-xxf =

To aid in the understanding 
of how this method works to 
find the root of an equation, 
the graph of f(x) is shown to 
the right, 

where

Solution

Figure 4 Graph of the function f(x)
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Example 1 Cont.

( )

( ) x-xxf

.+x.-xxf -

33.03'
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Let us assume the initial guess of the root of               
is                  . This is a reasonable guess (discuss why 

and                 are not good choices) as the 
extreme values of the depth x would be 0 and the 
diameter (0.11 m) of the ball.

( ) 0=xf
m05.00 =x

0=x m11.0=x

Solve for ( )xf '
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Example 1 Cont.
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Iteration 1
The estimate of the root is
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Example 1 Cont. 

Figure 5 Estimate of the root for the first iteration.
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Example 1 Cont.
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The absolute relative approximate error        at the end of Iteration 1 is
a

The number of significant digits at least correct is 0, as you need an 
absolute relative approximate error of 5% or less for at least one 
significant digits to be correct in your result.
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Example 1 Cont.
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Iteration 2
The estimate of the root is
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Example 1 Cont.

Figure 6 Estimate of the root for the Iteration 2.
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Example 1 Cont.
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The absolute relative approximate error        at the end of Iteration 2 
is

a

The maximum value of m for which                              is 2.844. 
Hence, the number of significant digits at least correct in the 
answer is 2.

m

a

− 2105.0
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Example 1 Cont.
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Iteration 3
The estimate of the root is
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Example 1 Cont.

Figure 7 Estimate of the root for the Iteration 3.
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Example 1 Cont.
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The absolute relative approximate error        at the end of Iteration 3 
is

a

The number of significant digits at least correct is 4, as only 4 
significant digits are carried through all the calculations.
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Advantages

◼ Converges fast (quadratic convergence), if 
it converges.  

◼ Requires only one guess
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Results obtained from the Newton-Raphson method may 
oscillate about the local maximum  or minimum without 
converging on a root but converging on the local maximum or 
minimum. 

Eventually, it may lead to division by a number close to zero 
and may diverge.

For example  for                          the equation has no real 
roots.

Drawbacks – Oscillations near local 
maximum and minimum

( ) 02 2 =+= xxf

3. Oscillations near local maximum and minimum
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Drawbacks – Oscillations near local 
maximum and minimum
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Figure 10 Oscillations around local   
minima for                  .( ) 2 2 += xxf

Iteration 

Number

0

1

2

3

4

5

6

7

8

9

–1.0000

0.5

–1.75

–0.30357

3.1423

1.2529

–0.17166

5.7395

2.6955

0.97678

3.00

2.25

5.063

2.092

11.874

3.570

2.029

34.942

9.266

2.954

300.00

128.571

476.47

109.66

150.80

829.88

102.99

112.93

175.96

Table 3 Oscillations near local maxima 
and mimima in Newton-Raphson method.

ix ( )ixf %a
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4. Root Jumping
In some cases where the function          is oscillating and has a number 
of roots, one may choose an initial guess close to a root. However, the 
guesses may jump and converge to some other root.

For example 

Choose 

It will converge to

instead of 
-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461  7.539822

Drawbacks – Root Jumping

( ) 0 sin == xxf

( )xf

539822.74.20 == x

0=x

2831853.62 == x Figure 11 Root jumping from intended 
location of root for

.( ) 0 sin == xxf
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Pros and Cons

• Pro: The error of the i+1th iteration 

is roughly proportional to the 

square of the error of the ith

iteration - this is called quadratic 

convergence

• Con: Some functions show slow or 

poor convergence
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MATLAB’s fzero Function

• MATLAB’s fzero provides the best qualities of 
both bracketing methods and open methods.
– Using an initial guess:
x = fzero(function, x0)

[x, fx] = fzero(function, x0)

• function is a function handle to the function being evaluated

• x0 is the initial guess

• x is the location of the root

• fx is the function evaluated at that root

– Using an initial bracket:
x = fzero(function, [x0 x1])

[x, fx] = fzero(function, [x0 x1])

• As above, except x0 and x1 are guesses that must bracket a 
sign change
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fzero Options

• Options may be passed to fzero as a third input 

argument - the options are a data structure created 
by the optimset command

• options = optimset(‘par1’, val1, ‘par2’, val2,…)

– parn is the name of the parameter to be set

– valn is the value to which to set that parameter

– The parameters commonly used with fzero are:

• display: when set to ‘iter’ displays a detailed record of all the 

iterations

• tolx: A positive scalar that sets a termination tolerance on x.
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fzero Example

• options = optimset(‘display’, ‘iter’);

– Sets options to display each iteration of root 

finding process

• [x, fx] = fzero(@(x) x^10-1, 0.5, options)

– Uses fzero to find roots of f(x)=x10-1 starting with 

an initial guess of x=0.5.

• MATLAB reports x=1, fx=0 after 35 

function counts
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Polynomials

• MATLAB has a built in program called roots to 

determine all the roots of a polynomial - including 

imaginary and complex ones.

• x = roots(c)

– x is a column vector containing the roots

– c is a row vector containing the polynomial coefficients

• Example:

– Find the roots of

f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– x = roots([1 -3.5 2.75 2.125 -3.875 1.25])
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Polynomials (cont)

• MATLAB’s poly function can be used to determine 
polynomial coefficients if roots are given:
– b = poly([0.5 -1])

• Finds f(x) where f(x) =0 for x=0.5 and x=-1

• MATLAB reports b = [1.000 0.5000 -0.5000]

• This corresponds to f(x)=x2+0.5x-0.5

• MATLAB’s polyval function can evaluate a 
polynomial at one or more points:
– a = [1 -3.5 2.75 2.125 -3.875 1.25];

• If used as coefficients of a polynomial, this corresponds to 
f(x)=x5-3.5x4+2.75x3+2.125x2-3.875x+1.25

– polyval(a, 1)

• This calculates f(1), which MATLAB reports as -0.2500
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