Nyquist Stability Criterion

A stability testfor time invariantlinear systemscanalsobe derivedin the
frequencydomain. It is known as Nyquist stability criterion. It is based
on the complexanalysisresultknown as Cauchy’s principle of argument.

Note that the systemtransferfunctionis a complexfunction. By applying
Cauchy’sprinciple of argumentto the open-loop system transferfunction,
we will getinformationaboutstability of the closed-loopsystemtransfer

function and arrive at the Nyquist stability criterion (Nyquist, 1932).

The importanceof Nyquist stability lies in the fact thatit canalsobe
usedto determinethe relative degreeof systemstability by producingthe
so-calledphaseand gain stability mamgins. Thesestability magins are

neededor frequencydomaincontroller designtechniques.



We presenbnly the essenc®f the Nyquiststability criterionanddefine
the phaseand gain stability mamgins. The Nyquist methodis usedfor

studyingthe stability of linear systemswith puretime delay.
For a SISO feedbacksystemthe closed-looptransferfunctionis given

by
G(s)

M(s) =
1+ H(s)G(s)
where G(s) representshe systemand H (s) is the feedbackelement.

Sincethe systempolesaredeterminecasthosevaluesat which its transfer
function becomesnfinity, it follows thatthe closed-loopsystempolesare
obtainedby solving the following equation

1+ H(s)G(s) =0= A(s)

which, in fact, representshe system characteristic equation.



In the following we considerthe complexfunction
D(s) =1+ H(s)G(s)

whosezerosarethe closed-loopoolesof thetransferfunction. In addition,
it is easyto seethatthepolesof D(s) arethezerosof M (s). At thesame
time the polesof D(s) arethe open-loopcontrol systempolessincethey
arecontributedoy the polesof H (s)G(s), which canbeconsidereasthe
open-loopcontrol systemtransferfunction—obtainedvhen the feedback
loop is open at some point. The Nyquist stability test is obtainedby
applyingthe Cauchyprinciple of argumentto the complexfunction D(s).

First, we state Cauchy’sprinciple of agument.



Cauchy’s Principle of Argument

Let F'(s) be an analytic function in a closedregion of the complex
plane s givenin Figure 4.6 exceptat a finite numberof points (namely,
the polesof F(s)). It is alsoassumedhat F'(s) is analytic at every
point on the contour. Then, as s travels around the contour in the s-
plane in the clockwise direction, the function F'(s) encircles the origin in
the (Re{F(s)}, Im{F(s)})-plane in the same direction N times (see

Figure 4.6), with N given by

N=Z7-P

where 7 and P stand for the number of zeros and poles (including their

multiplicities) of the function F'(s) inside the contour.



The aboveresult can be also written as
arg{F(s)} =(Z — P)27 =27« N

which justifies the terminologyused,“the principle of algument”,
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Figure 4.6: Cauchy’s principle of argument



Nyquist Plot
TheNyquistplotis apolarplot of thefunctionD(s) = 1+ G(s)H(s)

when s travelsaroundthe contourgivenin Figure4.7.
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Figure 4.7: Contour in the s-plane

The contourin this figure coversthe whole unstablehalf plane of the
complex planes, R — oo. Since the function D(s), accordingto

Cauchy’sprinciple of agument, must be analytic at every point on the



contour,the polesof D(s) on the imaginary axis must be encircledby

infinitesimally small semicircles.
Nyquist Stability Criterion
It statesthat the numberof unstableclosed-looppolesis equalto the

numberof unstableopen-looppolesplus the numberof encirclementsof

the origin of the Nyquist plot of the complexfunction D(s).

This canbe easilyjustified by applying Cauchy’sprinciple of algument
to the function D(s) with the s-planecontourgivenin Figure4.7. Note
that 7 and P representhe numbersof zerosand poles, respectively,of
D(s) in the unstablepart of the complexplane. At the sametime, the
zeros of D(s) are the closed-loop system poles, andthe poles of D(s) are

the open-loop system poles (closed-loopzeros).



The abovecriterion canbe slightly simplified if insteadof plotting the
function D(s) = 14+ G(s)H (s), we plot only the function G(s)H(s)
andcountencirclemenbdf the Nyquistplot of G(s)H (s) aroundthe point
(—1,70), sothatthe modified Nyquist criterion hasthe following form.

The number of unstable closed-loop poles (Z) is equal to the number of
unstable open-loop poles (P) plus the number of encirclements (N) of the

point (—1, 70) of the Nyquist plot of G(s)H (s), that is

/. =P+ N



Phase and Gain Stability Margins

Two importantnotionscanbe derivedfrom the Nyquistdiagram: phase
and gain stability margins. The phaseand gain stability magins are

presentedn Figure 4.8.
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Figure 4.8: Phase and gain stability margins



Theygive the degreeof relative stability; in otherwords,theytell how far
the given systemis from the instability region. Their formal definitions

are given by

Pm = 180° + arg {G(jwcg)H(ijg)}

1
Gm [dB] = 20log GG HGwow)) [dB]

wherew.q andwe, standfor, respectively the gain and phase crossover

frequencies, which from Figure 4.8 are obtainedas
|G(Jweg)H(Jweg)| =1 = weg

and

arg {G(Jwep)H(Jwep)} = 180° = wep



Example 4.23. Considera control systemrepresentedby
G(s)H(s) = ———

()H(s) = S

Sincethis systemhasa pole at the origin, the contourin the s-planeshould
encircleit with asemicircleof aninfinitesimally smallradius. This contour
hasthreeparts(a), (b), and(c). Mappingsfor eachof themareconsidered

below.

(a) Onthis semicirclethe complexvariables is representeth the polar
form by s = Rel¥ with R — oo, -3 < ¥ < Z. Substituting
s = ReIY into G(s)H(s), we easily seethat G(s)H(s) — 0.
Thus, the huge semicirclefrom the s-plane mapsinto the origin in the

G(s)H/(s)-plane (seeFigure 4.9).
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Figure 4.9: Nyquist plot for Example 4.23

(b) On this semicirclethe complexvariables is representeth the polar

form by s = re/® with r — 0, -3 < & < 2, sothatwe have

G(s)H(s) — % X arg (—®)

Since® changedrom —3 atpointA to 5 atpointB, arg {G(s)H (s)}



will changefrom 3 to —3. We concludethat the infinitesimally small

2
semicircle at the origin in the s-plane is mappedinto a semicircle of

infinite radiusin the G(s) H(s)-plane.

(c) On this part of the contour s takes pure imaginary values, i.e.
s = jw with w changingfrom —oo to +o0c0. Due to symmetry, it
is sufficient to study only mappingalong 07 < w < 4o0. We can
find the real and imaginary partsof the function G(yw)H (3w), which
are given by

—1
w? +1

—1
w(w? + 1)

Re{G(jw)H(jw)} =

Im{G(jw)H(Jw)} =



From theseexpressionsve seethat neither the real nor the imaginary
parts can be made zero, and hencethe Nyquist plot has no points of
intersectionwith the coordinateaxis. For w = 07 we are at point
B and since the plot at w = +oo will end up at the origin, the
Nyquist diagram correspondingto part (c) has the form as shown in
Figure4.9. Note that the vertical asymptoteof the Nyquist plot in Figure
4.9 is given by Re{G(j0T)H (j0%)} = —1 since at those points
Im{G(j0*)H (j0%)} = Foo.

From the Nyquist diagramwe seethat N = 0 andsincethereareno
open-looppolesin theleft half of thecomplexplane,i.e. P = 0, we have

Z = 0 sothatthecorrespondinglosed-loopsystemhasno unstablepoles.



The Nyquist plot is drawn by usingthe MATLAB functionnyqui st
nunel; den=[1 1 O0];
nyqui st (num den) ;
axis([-1.5 0.5 —10 10]);
axis([-1.2 0.2 1 1]);

The MATLAB Nyquist plot is presentedn Figure4.10. It canbe seen
from Figures4.8and4.9thatl /Gm = 0, whichimpliesthatGm = oc.
Also, from the samefiguresit follows thatw.p, = oco. In orderto find
the phasemaigin andthe correspondingyain crossovelfrequencywe use

the MATLAB function mar gi n as follows

[ Gn Pm wcp, weg] =mar gi n( num den)



producing,respectively,gain magin, phasemaigin, phasecrossovetfre-
guency,and gain crossoverfrequency. The required phasemamin and
gain crossoverfrequencyare obtainedas Pm = 53.4108°, weg =

0.7862rad/s.

Imag Axis

-1

-0.5
Real Axis

0

Imag Axis

0.8r

0.6

0.4r

0.2F

o
T

I
o
N

-0.4r

-0.6

-0.81

-1

-0.5
Real Axis

0

Figure 4.10: MATLAB Nyquist plot for Example 4.23



Example 4.24: Considernow the following system,obtainedfrom the
onein the previousexampleby addinga pole, that is

1

G)H(s) = o D + 2

The contour in the s-plane is the sameas in the previous example.
For cases(a) and (b) we have the sameanalysesand conclusions. It
remainsto examinecase(c). If we find the real and imaginary parts of
G(jw)H (jw), we get
—3
9w? + (2 — w?)
~(2 - w?)

w [9(.02 + (2 — wz)z}

Re{G(yw)H(jw)} =

2

Im{G(jw)H(yw)} =



It canbe seenthat an intersectionwith the real axis happensat w = /2
at the point Re{G<j\/§>H<j\/§>} = —1/6. The Nyquist plot is
givenin Figure4.11. The correspondingNyquist plot obtainedby using

MATLAB is givenin Figure 4.12.
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Figure 4.11: Nyquist plot for Example 4.24
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Figure 4.12: MATLAB Nyquist plot for Example 4.24

Note that the vertical asymptoteis given by Re{G(30)H (30)} =
—3/4. Thus,we have N = 0, P = 0, and Z = 0 so that the closed-

loop systemis stable. The MATLAB function mar gi n produces

Gm =6dB, Pm = 53.4108°

weg = 0.4457rad/s, wep = 1.4142rad/s






