
Nyquist Stability Criterion

A stability testfor time invariantlinearsystemscanalsobederivedin the

frequencydomain. It is known as Nyquist stability criterion. It is based

on the complexanalysisresultknown asCauchy’s principle of argument.

Note that thesystemtransferfunction is a complexfunction. By applying

Cauchy’sprinciple of argumentto the open-loop system transferfunction,

we will get informationaboutstability of the closed-loopsystemtransfer

function andarrive at the Nyquist stability criterion (Nyquist, 1932).

The importanceof Nyquist stability lies in the fact that it can also be

usedto determinethe relativedegreeof systemstability by producingthe

so-calledphaseand gain stability margins. Thesestability margins are

neededfor frequencydomaincontroller designtechniques.



We presentonly theessenceof theNyquiststability criterionanddefine

the phaseand gain stability margins. The Nyquist method is usedfor

studyingthe stability of linear systemswith pure time delay.

For a SISOfeedbacksystemthe closed-looptransferfunction is given

by

where representsthe systemand is the feedbackelement.

Sincethesystempolesaredeterminedasthosevaluesat which its transfer

functionbecomesinfinity, it follows that the closed-loopsystempolesare

obtainedby solving the following equation

which, in fact, representsthe system characteristic equation.



In the following we considerthe complexfunction

whosezerosaretheclosed-looppolesof thetransferfunction. In addition,

it is easyto seethatthepolesof arethezerosof . At thesame

time the polesof arethe open-loopcontrol systempolessincethey

arecontributedby thepolesof , whichcanbeconsideredasthe

open-loopcontrol systemtransferfunction—obtainedwhen the feedback

loop is open at somepoint. The Nyquist stability test is obtainedby

applyingtheCauchyprincipleof argumentto thecomplexfunction .

First, we stateCauchy’sprinciple of argument.



Cauchy’s Principle of Argument

Let be an analytic function in a closedregion of the complex

plane given in Figure 4.6 exceptat a finite numberof points (namely,

the poles of ). It is also assumedthat is analytic at every

point on the contour. Then, as travels around the contour in the -

plane in the clockwise direction, the function encircles the origin in

the -plane in the same direction times (see

Figure 4.6), with given by

where and stand for the number of zeros and poles (including their

multiplicities) of the function inside the contour.



The aboveresult can be also written as

which justifies the terminologyused,“the principle of argument”.
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Figure 4.6: Cauchy’s principle of argument



Nyquist Plot

TheNyquistplot is apolarplot of thefunction

when travelsaroundthe contourgiven in Figure 4.7.
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Figure 4.7: Contour in the -plane

The contour in this figure covers the whole unstablehalf plane of the

complex plane , . Since the function , accordingto

Cauchy’sprinciple of argument,must be analytic at every point on the



contour, the polesof on the imaginaryaxis must be encircledby

infinitesimally small semicircles.

Nyquist Stability Criterion

It statesthat the numberof unstableclosed-looppoles is equal to the

numberof unstableopen-looppolesplus the numberof encirclementsof

the origin of the Nyquist plot of the complexfunction .

This canbeeasilyjustifiedby applyingCauchy’sprincipleof argument

to the function with the -planecontourgiven in Figure4.7. Note

that and representthe numbersof zerosand poles,respectively,of

in the unstablepart of the complexplane. At the sametime, the

zeros of are the closed-loop system poles, andthe poles of are

the open-loop system poles (closed-loopzeros).



The abovecriterion canbe slightly simplified if insteadof plotting the

function , we plot only the function

andcountencirclementof theNyquistplot of aroundthepoint

, so that the modified Nyquist criterion hasthe following form.

The number of unstable closed-loop poles (Z) is equal to the number of

unstable open-loop poles (P) plus the number of encirclements (N) of the

point of the Nyquist plot of , that is



Phase and Gain Stability Margins

Two importantnotionscanbederivedfrom theNyquistdiagram:phase

and gain stability margins. The phaseand gain stability margins are

presentedin Figure 4.8.
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Figure 4.8: Phase and gain stability margins



Theygive thedegreeof relativestability; in otherwords,they tell how far

the given systemis from the instability region. Their formal definitions

are given by
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where
���

and
���

standfor, respectively,the gain and phase crossover

frequencies, which from Figure 4.8 are obtainedas
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and
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Example 4.23: Considera control systemrepresentedby

Sincethis systemhasa poleat theorigin, thecontourin the -planeshould

encircleit with asemicircleof aninfinitesimallysmallradius.Thiscontour

hasthreeparts(a), (b), and(c). Mappingsfor eachof themareconsidered

below.

(a) On this semicirclethecomplexvariable is representedin thepolar

form by
���

with � � � � . Substituting
���

into , we easily see that .

Thus, the huge semicirclefrom the -planemapsinto the origin in the

-plane (seeFigure 4.9).
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Figure 4.9: Nyquist plot for Example 4.23

(b) On this semicirclethecomplexvariable is representedin thepolar

form by
���

with � � � � , so that we have

���

Since changesfrom � � at point A to � � at point B,



will changefrom  ! to  ! . We concludethat the infinitesimally small

semicircle at the origin in the -plane is mappedinto a semicircle of

infinite radius in the -plane.

(c) On this part of the contour takes pure imaginary values, i.e.

with changingfrom to . Due to symmetry, it

is sufficient to study only mappingalong " . We can

find the real and imaginarypartsof the function , which

are given by

!

!



From theseexpressionswe see that neither the real nor the imaginary

parts can be made zero, and hencethe Nyquist plot has no points of

intersectionwith the coordinateaxis. For # we are at point

B and since the plot at will end up at the origin, the

Nyquist diagram correspondingto part (c) has the form as shown in

Figure4.9. Note that the vertical asymptoteof the Nyquist plot in Figure

4.9 is given by
$ $

since at those points
$ $

.

From the Nyquist diagramwe seethat andsincethereareno

open-looppolesin theleft half of thecomplexplane,i.e. , we have

sothatthecorrespondingclosed-loopsystemhasnounstablepoles.



The Nyquist plot is drawnby usingthe MATLAB functionnyquist

num=1; den=[1 1 0];

nyquist(num,den);

axis([-1.5 0.5 —10 10]);

axis([-1.2 0.2 1 1]);

The MATLAB Nyquist plot is presentedin Figure4.10. It canbe seen

from Figures4.8and4.9that , which impliesthat .

Also, from the samefiguresit follows that %�& . In order to find

the phasemargin andthe correspondinggain crossoverfrequencywe use

the MATLAB function margin as follows

[Gm,Pm,wcp,wcg]=margin(num,den)



producing,respectively,gain margin, phasemargin, phasecrossoverfre-

quency,and gain crossoverfrequency. The requiredphasemargin and

gain crossoverfrequencyare obtainedas ' (�)
.

−1 −0.5 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

Real Axis

Im
ag

 A
xi

s

−1 −0.5 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

Figure 4.10: MATLAB Nyquist plot for Example 4.23



Example 4.24: Considernow the following system,obtainedfrom the

one in the previousexampleby addinga pole, that is

The contour in the -plane is the same as in the previous example.

For cases(a) and (b) we have the sameanalysesand conclusions. It

remainsto examinecase(c). If we find the real and imaginarypartsof

, we get

* * *
*

* * *



It canbe seenthat an intersectionwith the real axis happensat

at the point + . The Nyquist plot is

given in Figure4.11. The correspondingNyquist plot obtainedby using

MATLAB is given in Figure 4.12.
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Figure 4.11: Nyquist plot for Example 4.24



−1.5 −1 −0.5 0 0.5
−10

−8

−6

−4

−2

0

2

4

6

8

10

Real Axis

Im
ag

 A
xi

s

−1 −0.5 0
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Real Axis

Im
ag

 A
xi

s

Figure 4.12: MATLAB Nyquist plot for Example 4.24

Note that the vertical asymptoteis given by

. Thus,we have , and so that the closed-

loop systemis stable.The MATLAB functionmargin produces

-

.�/ .�0




