- The IIR and FIR filter design techniques discussed so far can be easily implemented on a computer
- In addition, there are a number of filter design algorithms that rely on some type of optimization techniques that are used to minimize the error between the desiredfrequency response and that of the computer-generated filter

1

- Basic idea behind the computer-based iterative technique
- Let $H(e^{j\omega})$ denote the frequency response of the digital filter $H(z)$ to be designed approximating the desired frequency response $D(e^{j\omega})$, given as a piecewise linear function of ω , in some sense

- Objective Determine iteratively the coefficients of *H* (*z*) so that the difference between between $H(e^{j\omega})$ and $D(e^{j\omega})$ over closed subintervals of $0 \le \omega \le \pi$ is minimized $H(e^{j\omega})$ and $D(e^{j\omega})$ $D(e^{j\omega}$
- This difference usually specified as a weighted error function

where $W(e^{j\omega})$ is some user-specified weighting function $W(e^{j\omega})[H(e^{j\omega})-D(e^{j\omega})]$ − $E(\omega) = W(e^{j\omega})[H(e^{j\omega}) - D(e^{j\omega})]$ $W(e^{j\omega})$

• **Chebyshev** or **minimax criterion** - Minimizes the peak absolute value of the weighted error:

 $\varepsilon = \max E(\omega)$ ω∈ *E R*

where *R* is the set of disjoint frequency bands in the range $0 \le \omega \le \pi$, on which $D(e^{j\omega})$ is defined

• For example, for a lowpass filter design, *R* is the disjoint union of $[0, \omega_p]$ and $[\omega_s, \pi]$

• **Least-***p* **Criterion** - Minimize

$$
\varepsilon = \iint_{\omega \in R} W(e^{j\omega}) [H(e^{j\omega}) - D(e^{j\omega})]^{p} d\omega
$$

over the specified frequency range *R* with *p* a positive integer

- *p* = 2 yields the **least-squares criterion**
- As $p \rightarrow \infty$, the least *p*-th solution approaches the minimax solution

- **Least-***p* **Criterion -**- In practice, the p-th power error measure is approximated as where ω_i , $1 \le i \le K$, is a suitably chosen dense grid of digital angular frequencies $j\omega_i$ **p** ω_i **p** $j\omega_i$ **p** $\mathcal{E} = \sum_{i=1}^{K} \{ W(e^{j\omega_i}) [H(e^{j\omega_i}) - D(e^{j\omega_i})] \}$ ω_i , $1 \le i \le K$
- For linear-phase FIR filter design, $H(e^{j\omega})$ and $(e^{j\omega})$ are zero-phase frequency responses $H(e^{j\omega}$ $D(e^{j\omega}$
- For IIR filter design, $H(e^{j\omega})$ and $D(e^{j\omega})$ are magnitude functions $H(e^{j\omega})$ and $D(e^{j\omega})$ $D(e^{j\omega}$

• The linear-phase FIR filter obtained by minimizing the peak absolute value of

$$
\varepsilon = \max_{\omega \in R} \left| \mathcal{I}(\omega) \right|
$$

is usually called the **equiripple FIR filter**

• After ε is minimized, the weighted error function *E*(ω) exhibits an equiripple behavior in the frequency range *R*

• The general form of frequency response of a causal linear-phase FIR filter of length 2*M*+1:

$$
H(e^{j\omega})=e^{-jM\omega}e^{j\beta}\breve{H}(\omega)
$$

where the amplitude response $\breve{H}(\omega)$ is a real function of ω

• Weighted error function is given by (ω) $=W(\omega)[H(\omega)]$ $E(\omega) = W(\omega)[\breve{H}(\omega) - D(\omega)]$

where $D(\omega)$ is the desired amplitude r response and $W(\omega)$ is a positive weighting function

- **Parks-McClellan Algorithm** Based on iteratively adjusting the coefficients of $\breve{H}(\omega)$ until the peak absolute value of $E(\omega)$ is minimized
- If peak absolute value of $E(\omega)$ in a band $\omega_a \leq \omega \leq \omega_b$ *is* ε_o , then the absolute error satisfies

$$
|\breve{H}(\omega) - D(\omega)| \le \frac{\varepsilon_o}{|W(\omega)|}, \quad \omega_a \le \omega \le \omega_b
$$

• For filter design,

 $D(\omega) = \begin{cases} 1, & \text{in the passband} \\ 0, & \text{in the stopband} \end{cases}$

• $\tilde{H}(\omega)$ is required to satisfy the above desired response with a ripple of $\pm \delta_p$ in the passband and a ripple of δ_s in the stopband

• Thus, weighting function can be chosen either as

$$
W(\omega) = \begin{cases} 1, & \text{in the passband} \\ \delta_p / \delta_s, & \text{in the stopband} \end{cases}
$$

or

 $W(\omega) = \begin{cases} \delta_s / \delta_p, & \text{in the passband} \\ 1, & \text{in the stopband} \end{cases}$

• **Type 1 FIR Filter** $-H(\omega) = \sum a[k] \cos(\omega)$ where k = 0 $\breve{H}(\omega) = \sum_{k=1}^{M} a[k] \cos(\omega k)$

 $a[0] = h[M], a[k] = 2h[M-k], 1 \leq k \leq M$

• **Type 2 FIR filter** -

$$
\breve{H}(\omega) = \sum_{k=1}^{(2M+1)/2} b[k] \cos\left(\omega(k - \frac{1}{2})\right)
$$

where

$$
b[k] = 2h[\frac{2M+1}{2} - k], \ 1 \le k \le \frac{2M+1}{2}
$$

Design of Equiripple Linear-Phase FIR Filters • Type 3 FIR Filter - $\breve{H}(\omega) = \sum c[k] \sin(\omega k)$ where k =1 *M*

 $c[k] = 2h[M - k], 1 \leq k \leq M$

• **Type 4 FIR Filter** whereω(ω) = $\sum_{k=0}^{2M+1/2} d[k]sin(\omega(k-\frac{1}{2}))$ =1*k* $\frac{2}{1}$ 1 $\breve{H}(\omega) = \sum_{k=0}^{(2M+1)/2} d[k] \sin\left(\omega (k-\frac{1}{2})\right)$

$$
d[k] = 2h[\frac{2M+1}{2} - k], \quad 1 \le k \le \frac{2M+1}{2}
$$

• Amplitude response for all 4 types of linearphase FIR filters can be expressed as

> *H* (ω) $\widetilde{H}(\omega) = Q(\omega)A(\omega)$

where

 $\overline{\mathcal{L}}$ $\left\{ \right\}$ \int ω ω ω ω) = $\sin(\omega/2)$, for Type 4 $sin(\omega)$, for Type 3 $cos(\omega/2)$, for Type 2 1, fo r T ype 1 $Q(\omega)$

**Design of Equiripple
\nLinear-Phase FIR Filters**
\nand
\n
$$
A(\omega) = \sum_{k=0}^{L} \tilde{a}[k] \cos(\omega k)
$$

\nwhere
\n
$$
\tilde{a}[k] = \begin{cases} a[k], & \text{for Type 1} \\ \tilde{b}[k], & \text{for Type 2} \\ \tilde{c}[k], & \text{for Type 3} \\ \tilde{d}[k], & \text{for Type 4} \end{cases}
$$

with

$$
L = \begin{cases} M, & \text{for Type 1} \\ \frac{2M-1}{2}, & \text{for Type 2} \\ \frac{2M-1}{2}, & \text{for Type 3} \end{cases}
$$

 $\tilde{b}[k]$, $\tilde{c}[k]$, and $\tilde{d}[k]$, are related to $b[k]$, *^c*[*k*], and *d*[*k*], respectively

• Modified form of weighted error function where we have used the notation $E(\omega) = W(\omega)[Q(\omega)A(\omega) - D(\omega)]$ $= W(\omega)Q(\omega)[A(\omega) - \frac{D(\omega)}{Q(\omega)}]$ $= \widetilde{W}(\omega)[A(\omega) - \widetilde{D}(\omega)]$ $\widetilde{W}(\omega) = W(\omega)Q(\omega)$ $\widetilde{D}(\omega) = D(\omega) / Q(\omega)$

• Optimization Problem - Determine $\tilde{a}[k]$ which minimize the peak absolute value ε of $E(\omega) = \widetilde{W}(\omega) \left[\sum \widetilde{a}[k] \cos(\omega k) - \widetilde{D}(\omega) \right]$ $k=0$ *L*

over the specified frequency bands $\omega \in R$

• After $\tilde{a}[k]$ has been determined, corresponding coefficients of the original $A(e^{j\omega})$ are computed from which $h[n]$ are determined

• Alternation Theorem - A(ω) is the best unique approximation of $D(\omega)$ obtained by minimizing peak absolute value ε of if and only if there exist at least *L*+2 extremal frequencies, $\{\omega_i\}$, $0 \le i \le L+1$, in a closed subset *R* of the frequency range $0 \leq \omega \leq \pi$ such that $\omega_0 < \omega_1 < \cdots < \omega_L < \omega_{L+1}$ and $E(\omega_i) = -E(\omega_{i+1}), |E(\omega_i)| = \varepsilon$ for all *i* $E(\omega) = W(\omega)[Q(\omega)A(\omega) - D(\omega)]$

- Consider a Type 1 FIR filter with an amplitude response $A(\omega)$ whose approximation error $E(\omega)$ satisfies the Alternation Theorem
- Peaks of $E(\omega)$ are at $\omega = \omega_i$, $0 \le i \le L+1$ where $dE(\omega)/d\omega = 0$
- Since in the passband and stopband, $\widetilde{W}(\omega)$ and $\widetilde{D}(\omega)$ are piecewise constant, $\bm{0}$ $dA(\omega)$ = ω $=\frac{dA(\omega)}{d\omega}$ ω ω *d dA d* $\frac{dE(\omega)}{dt} = \frac{dA(\omega)}{dt} = 0$ at $\omega = \omega_i$

- Using $cos(\omega k) = T_k(cos\omega)$, where $T_k(x)$ is the *k*-th order Chebyshev polynomial $T_k(x) = \cos(k \cos^{-1} x)$
- $A(\omega)$ can be expressed as $A(\omega) = \sum_{k=0}^{L} \alpha[k](\cos \omega)^k$

which is an *L*th-order polynomial in cosω

• Hence, $A(\omega)$ can have at most $L-1$ local minima and maxima inside specified passband and stopband

- At bandedges, $\omega = \omega_p$ and $\omega = \omega_s$, $|E(\omega)|$ is **a** maximum, and hence A(ω) has extrema at these points
- $A(\omega)$ can have extrema at $\omega = 0$ and $\omega = \pi$
- Therefore, there are at most *L*+3 extremal frequencies of *E*(ω)
- For linear-phase FIR filters with *K* specified bandedges, there can be at most *L*+*K*+1 extremal frequencies

- The set of equations is written in a matrix form $\widetilde{W}(\omega_i)[A(\omega_i) - \widetilde{D}(\omega_i)] = (-1)^i \varepsilon, \quad 0 \le i \le L+1$
- $\begin{bmatrix} 1 & \cos(\omega_0) & \cdots & \cos(L\omega_0) & -1/\tilde{W}(\omega_0) \\ 1 & \cos(\omega_1) & \cdots & \cos(L\omega_1) & 1/\tilde{W}(\omega_1) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \cos(\omega_L) & \cdots & \cos(L\omega_L) & (-1)^{L-1}/\tilde{W}(\omega_L) \\ 1 & \cos(\omega_{L+1}) & \cdots & \cos(L\omega_{L+1}) & (-1)^{L}/\tilde{W}(\omega_{L+1}) \end{bmatrix} \begin{bmatrix} \tilde{a}[0] \\ \tilde{a}[1] \\$

- The matrix equation can be solved for the unknowns $\tilde{a}[i]$ and ε if the locations of the *L*+2 extremal frequencies are known a priori
- The **Remez exchange algorithm** is used to determine the locations of the extremal frequencies

• Step 1: A set of initial values of extremal frequencies are either chosen or are available from completion of previous stage

• Step 2: Value of
$$
\varepsilon
$$
 is computed using
\n
$$
\varepsilon = \frac{c_0 \tilde{D}(\omega_0) + c_1 \tilde{D}(\omega_1) + \dots + c_{L+1} \tilde{D}(\omega_{L+1})}{\overline{W}(\omega_0)} - \frac{c_1}{\overline{W}(\omega_1)} + \dots + \frac{(-1)^{L+1} c_{L+1}}{\overline{W}(\omega_{L+1})}
$$
\nwhere $c_n = \prod_{\substack{i=0 \ i \neq n}}^{L+1} \frac{1}{\cos(\omega_n) - \cos(\omega_i)}$

• <u>Step 3</u>: Values of $A(\omega)$ at $\omega = \omega_i$ are then computed using

$$
A(\omega_i) = \frac{(-1)^i \varepsilon}{\widetilde{W}(\omega_i)} + \widetilde{D}(\omega_i), \quad 0 \le i \le L + 1
$$

• Step 4: The polynomial $A(\omega)$ is determined by interpolating the above values at the *L*+2 extremal frequencies using the Lagrange interpolation formula

• Step 4: The new error function

 $E(\omega) = \widetilde{W}(\omega)[A(\omega) - \widetilde{D}(\omega)]$

is computed at a dense set $S(S \geq L)$ of frequencies. In practice $S = 16L$ is adequate. Determine the *L*+2 new extremal frequencies from the values of $\,E(\omega)$ evaluated at the dense set of frequencies.

• Step 5: If the peak values ε of $E(\omega)$ are equal in magnitude, algorithm has converged. Otherwise, go back to Step 2.

• Illustration of algorithm

Iteration process is stopped if the difference between the values of the $\frac{a_2^k}{a_3^k}$ $\frac{a_4^k}{a_4^k}$ peak absolute errors between two consecutive stages is \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} a preset value, e.g., 10^{-6}

• Example - Approximate the desired function $D(x) = 1.1x^2 - 0.1$ defined for the range $0 \le x \le 2$ by a linear function $a_1x + a_0$ by minimizing the peak value of the absolute error

$$
\max_{x \in [0,2]} |1.1x^2 - 0.1 - a_0 - a_1x|
$$

• <u>Stage 1</u>:

Choose arbitrarily the initial extremal points $x_1 = 0, x_2 = 0.5, x_3 = 1.5$

• Solve the three linear equations $a_0 + a_1 x_\ell - (-1)^\ell \varepsilon = D(x_\ell), \quad \ell = 1, 2, 3$

i.e.,
$$
\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0.5 & -1 \\ 1 & 1.5 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \varepsilon \end{bmatrix} = \begin{bmatrix} -0.1 \\ 0.175 \\ 2.375 \end{bmatrix}
$$

for the given extremal points yielding $a_0 = -0.375, a_1 = 1.65, \ \varepsilon = 0.275$

• Plot of $\mathcal{I}_1(x) = 1.1x^2 - 1.65x + 0.275$ along with values of error at chosen extremal points shown below

• Note: Errors are equal in magnitude and alternate in sign

- <u>Stage 2</u>:
- Choose extremal points where $\mathcal{F}_1(x)$ assumes its maximum absolute values
- These are $x_1 = 0$, $x_2 = 0.75$, $x_3 = 2$
- New values of unknowns are obtained by solving $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0.75 & -1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \varepsilon \end{bmatrix} = \begin{bmatrix} -0.1 \\ 0.5188 \\ 4.3 \end{bmatrix}$
	- $yielding \quad a_0 = -0.6156, a_1 = 2.2, \ \varepsilon = 0.5156$

• Plot of $\mathcal{I}_2(x) = 1.1x^2 - 2.2x + 0.5156$ along with values of error at chosen extremal points shown below

- <u>Stage 3</u>:
- Choose extremal points where $\mathcal{F}_2(x)$ assumes its maximum absolute values
- These are $x_1 = 0$, $x_2 = 1$, $x_3 = 2$
- New values of unknowns are obtained by solving

$$
\begin{bmatrix} 1 & 0 & 1 \ 1 & 1 & -1 \ 1 & 2 & 1 \ \end{bmatrix} \begin{bmatrix} a_0 \ a_1 \ \epsilon \end{bmatrix} = \begin{bmatrix} -0.1 \ 1.0 \ 4.3 \ \end{bmatrix}
$$

yielding $a_0 = -0.65$, $a_1 = 2.2$, $\varepsilon = 0.55$

Remez Exchange Algorithm • Plot of $\mathcal{I}_3(x) = 1.1x^2 - 2.2x + 0.55$ along with values of error at chosen extremal points shown below

• Algorithm has converged as ε is also the maximum value of the absolute error

IIR Digital Filter Design Using MATLAB

- Order Estimation -
- For IIR filter design using bilinear transformation, MATLAB statements to determine the order and bandedge are: $[N, Wn] = \text{butterd(Wp, Ws, Rp, Rs)};$ $[N, Wn] = \text{cheb1ord}(Wp, Ws, Rp, Rs);$ $[N, Wn] = \text{cheb2ord}(Wp, Ws, Rp, Rs);$ $[N, Wn] = elliptord(Wp, Ws, Rp, Rs);$
• Example - Determine the minimum order of a Type 2 Chebyshev digital highpass filter with the following specifications:

$$
F_p = 1 \text{ kHz}, F_p = 1 \text{ kHz}, F_T = 4 \text{ kHz},
$$

$$
\alpha_p = 1 \text{ dB}, \alpha_s = 40 \text{ dB}
$$

- Here, $Wp = 2 \times 1/4 = 0.5$, $Ws = 2 \times 0.6/4 = 0.3$
- Using the statement $[N, Wn] = \text{cheb2ord}(0.5, 0.3, 1, 40);$ we get $N = 5$ and $Wn = 0.3224$

- <u>Filter Design</u> -
- For IIR filter design using bilinear transformation, MATLAB statements to use are:

[b, a] = butter(N, Wn) [b, a] = cheby1(N, Rp, Wn) [b, a] = cheby2(N, Rs, Wn) [b, a] = ellip(N, Rp, Rs, Wn)

• The form of transfer function obtained is

$$
G(z) = \frac{B(z)}{A(z)} = \frac{b(1) + b(2)z^{-1} + \dots + b(N+1)z^{-N}}{1 + a(2)z^{-1} + \dots + a(N+1)z^{-N}}
$$

- The frequency response can be computed using the M-file freqz(b, a, w) where w is a set of specified angular frequencies
- It generates a set of complex frequency response samples from which magnitude and/or phase response samples cn be computed

- Example Design an elliptic IIR lowpass filter with the specifications: $F_p = 0.8 \text{ kHz}$, $F_s = 1 \text{ kHz}, F_T = 4 \text{ kHz}, \alpha_p = 0.5 \text{ dB},$ α_{s} = 40 dB = $F_{p}=0.8$
- Here, $\omega_p = 2\pi F_p / F_T = 0.4\pi, \omega_s = 2\pi F_s / F_T = 0.5\pi$
- Code fragments used are: $[N, Wn] = elliptord(0.4, 0.5, 0.5, 40);$ $[b, a] = ellipt(N, 0.5, 40, Wn);$

• Gain response plot is shown below:

- Order Estimation -
- Kaiser's Formula:

$$
N \approx \frac{-20\log_{10}(\sqrt{\delta_p \delta_s})}{14.6(\omega_s - \omega_p)/2\pi}
$$

• Note: Filter order *N* is inversely proportional to transition band width $(\omega_s - \omega_p)$ and does not depend on actual location of transition band

• Hermann-Rabiner-Chan's Formula:

$$
N \simeq \frac{D_{\infty}(\delta_p, \delta_s) - F(\delta_p, \delta_s)[(\omega_s - \omega_p)/2\pi]^2}{(\omega_s - \omega_p)/2\pi}
$$

where

43

$$
D_{\infty}(\delta_p, \delta_s) = [a_1(\log_{10} \delta_p)^2 + a_2(\log_{10} \delta_p) + a_3] \log_{10} \delta_s
$$

+ $[a_4(\log_{10} \delta_p)^2 + a_5(\log_{10} \delta_p) + a_6]$
 $F(\delta_p, \delta_s) = b_1 + b_2[\log_{10} \delta_p - \log_{10} \delta_s]$
with $a_1 = 0.005309, a_2 = 0.07114, a_3 = -0.4761$
 $a_4 = 0.00266, a_5 = 0.5941, a_6 = 0.4278$
 $b_1 = 11.01217, b_2 = 0.51244$

Copyright © 2001, S. K. Mitra

- Formula valid for $\delta_p \ge \delta_s$
- For $\delta_p < \delta_s$, formula to be used is obtained by interchanging δ_p and δ_s
- Both formulas provide only an estimate of the required filter order *N*
- Frequency response of FIR filter designed using this estimated order may or may not meet the given specifications
- If specifications are not met, increase filter order until they are met

- MATLAB code fragments for estimating filter order using Kaiser's formula num = $-20*log10(sqrt(dp * ds)) - 13;$ den = $14.6*(Fs - Fp)/FT;$ $N =$ ceil(num/den);
- \bullet M-file remezord implements Hermann-Rabiner-Chan's order estimation formula

- For FIR filter design using the Kaiser window, window order is estimated using the M-file kaiserord
- The M-file kaiserord can in some cases generate a value of *N* which is either greater or smaller than the required minimum order
- If filter designed using the estimated order *N* does not meet the specifications, *N* should either be gradually increased or decreased until the specifications are met

- The M-file remez can be used to design an equiripple FIR filter using the Parks-McClellan algorithm
- Example Design an equiripple FIR filter with the specifications: $F_p = 0.8$ kHz, $F_s = 1$ kHz, $F_T = 4$ kHz, $\alpha_p = 0.5$ dB, $\alpha_s = 40$ dB = $F_{p}=0.8$
- Here, $\delta_n = 0.0559$ and $\delta_p = 0.0559$ and $\delta_s = 0.01$

• MATLAB code fragments used are $[N, fpts, mag, wt] =$ remezord(fedge, mval, dev, FT); $b = remez(N, fpts, mag, wt);$ where fedge = [800 1000], mval = $[1 \ 0]$, dev = $[0.0559 \ 0.01]$, and $FT = 4000$

- The computed gain response with the filter order obtained $(N = 28)$ does not meet the specifications ($\alpha_p = 0.6$ dB, $\alpha_s = 38.7$ dB)
- Specifications are met with *N* = 30

49

Copyright © 2001, S. K. Mitra

- Example Design a linear-phase FIR bandpass filter of order 26 with a passband from 0.3 to 0.5, and stopbands from 0 to 0.25 and from 0.55 to 1
- The pertinent input data here are $N = 26$

fpts = $[0 \t0.25 \t0.3 \t0.5 \t0.55 \t1]$ $mag = [0 \ 0 \ 1 \ 1 \ 0 \ 0]$ $wt = [1 \ 1 \ 1]$

• Computed gain response shown below where $\alpha_p = 1$ dB, $\alpha_s = 18.7$ dB

- We redesign the filter with order increased to 110
- Computed gain response shown below where $\alpha_p = 0.024$ dB, $\alpha_s = 51.2$ dB $_{p} = 0.$
- Note: Increase in order improves gain response at the gain response at the g
expense of increased $\frac{a}{5}$ computational complexity

- α_s can be increased at the expenses of a larger α_p by decreasing the relative weight ratio $W(\omega) = \delta_p / \delta_s$ $=\delta_n/\delta$ 0 $N = 110$, weight ratio = $1/10$
- Gain response of bandpass filter of order 110 obtained with a weight vector [1 0.1 1]

• Now $\alpha_p = 0.076$ dB, $\alpha_s = 60.86$ dB $\alpha_s = 60.86$

 -0.1

Absolute Error

Absolute Error

0

0.1

0.2

 $N = 26$, weight ratio = 1

- Plots of absolute error for 1st design
- Absolute error has same peak value in all bands
- As $L = 13$, and there are 4 band edges, there can be at most *L* −1+6 =18 extrema 0 0.2 0.4 0.6 0.8 1 -0.2ω/π
- Error plot exhibits 17 extrema

- Absolute error has same peak value in all bands for the 2nd design
- Absolute error in passband of 3rd design is 10 times the error in the stopbands

Copyright © 2001, S. K. Mitra

- Example Design a linear-phase FIR bandpass filter of order 60 with a passband from 0.3 to 0.5, and stopbands from 0 to 0.25 and from 0.6 to 1 with unequal weights
- The pertinent input data here are $N = 60$ fpts = $[0 \t0.25 \t0.3 \t0.5 \t0.6 \t1]$ $mag = [0 \ 0 \ 1 \ 1 \ 0 \ 0]$ $wt = [1 \ 1 \ 0.3]$

• Plots of gain response and absolute error shown below

- Response in the second transition band shows a peak with a value higher than that in passband
- Result does not contradict alternation theorem
- As $N = 60$, $M = 30$, and hence, there must be at least $M + 2 = 32$ extremal frequencies
- Plot of absolute error shows the presence of 32 extremal frequencies

- If gain response of filter designed exhibits a nonmonotonic behavior, it is recommended that either the filter order or the bandedges or the weighting function be adjusted until a satisfactory gain response has been obtained
- Gain plot obtained by moving the second stopband edge to 0.55

• A lowpass differentiator has a bandlimited frequency response

$$
H_{DIF}(e^{j\omega}) = \begin{cases} j\omega, & 0 \le |\omega| \le \omega_p \\ 0, & \omega_s \le |\omega| \le \pi \end{cases}
$$

where $0 \leq |\omega| \leq \omega_n$ represents the passband and $\omega_s \leq |\omega| \leq \pi$ represents the stopband $0 \leq |\omega| \leq \omega_p$ $\omega_{_S} \leq$ ω \leq π

• For the design phase we choose $P(\omega) = 1/\omega, \quad D(\omega) = 1, \quad 0 \leq |\omega| \leq \omega_p$

- The M-file remezord cannot be used to estimate the order of an FIR differentiator
- Example Design a full-band $(\omega_p = \pi)$ differentiator of order 11
- Code fragment to use $b = remez(N, fpts, mag, 'differentiator');$ where $N = 11$ fpts $= [0 \ 1]$ $mag = [0 \text{ pi}]$

• Plots of magnitude response and absolute

error

• Absolute error increases with ω as the algorithm results in an equiripple error of the function $\left[\frac{A(\omega)}{\omega} - 1\right]$

- Example Design a lowpass differentiator of order 50 with $\omega_n = 0.4\pi$ and $\omega_p = 0.4\pi$ and $\omega_s = 0.45\pi$
- Code fragment to use $b = remez(N, fpts, mag, 'differentiator');$ where

 $N = 50$ fpts = $[0 \t0.4 \t0.45 \t1]$ $mag = [0 \ 0.4*pi \ 0 \ 0]$

• Plot of the magnitude response of the lowpass differentiator

Equiripple FIR Hilbert Transformer **Design Using MATLAB**

• Desired amplitude response of a bandpass Hilbert transformer is

 $D(\omega) = 1$, $\omega_L \leq |\omega| \leq \omega_H$

with weighting function

 $P(\omega) = 1$, $\omega_L \leq |\omega| \leq \omega_H$

• Impulse response of an ideal Hilbert transformer satisfies the conditionwhich can be met by a Type 3 FIR filter $h_{HT}[n] = 0$, for *n* even

Equiripple FIR Hilbert Transformer **Design Using MATLAB**

- Example Design a linear-phase bandpass FIR Hilbert transformer of order 20 with $\omega_L^{} = 0.1\pi$, $\; \omega_H^{} = 0.9\pi$
- Code fragment to use $b = remez(N, fpts, mag, 'Hilbert');$ where

 $N = 20$ fpts = $[0.1 \ 0.9]$ $mag = [1 \ 1]$

Equiripple FIR Hilbert Transformer **Design Using MATLAB**

• Plots of magnitude response and absolute error

• Window Generation - Code fragments to use $w = blackman(L);$ $w = \text{hamming}(L);$ $w = \text{hanning}(L);$ $w =$ chebwin(L, Rs); $w = kaiser(L, beta);$ where window length *L* is odd

- Example Kaiser window design for use in a lowpass FIR filter design
- Specifications of lowpass filter: $\omega_p = 0.3\pi$, $\omega_s = 0.4\pi$, $\alpha_s = 50$ dB $\Rightarrow \delta_s = 0.003162$
- Code fragments to use $[N, Wn, beta, flype] = kaiserord(fpts, mag, dev);$ $w = kaiser(N+1, beta);$ where ${\rm fpts} = [0.3 \;\; 0.4]$ $mag = [1 \ 0]$ $dev = [0.003162 \quad 0.003162]$

• Plot of the gain response of the Kaiser window

- M-files available are fir1 and fir2
- fir1 is used to design conventional lowpass, highpass, bandpass, bandstop and multiband FIR filters
- fir2 is used to design FIR filters with arbitrarily shaped magnitude response
- In fir1, Hamming window is used as a default if no window is specified

- Example Design using a Kaiser window a lowpass FIR filter with the specifications: \sim , $\omega_p = 0.3\pi$, $\omega_s = 0.4\pi$, $\delta_s = 0.003162$
- Code fragments to use $[N, Wn, beta, flype] = kaiserord(fpts, mag, dev);$ $b = \text{fir1(N, Wn, kaiser(N+1, beta))};$ where $fpts = [0.3 \ 0.4]$ $mag = [1 \ 0]$ $dev = [0.003162 \quad 0.003162]$
• Plot of gain response

Copyright © 2001, S. K. Mitra

- Example Design using a Kaiser window a highpass FIR filter with the specifications: \mathcal{L} , $\omega_p = 0.55\pi,\,\omega_s = 0.4\pi,\,\delta_s = 0.02$
- Code fragments to use
- [N, Wn, beta, ftype] = kaiserord(fpts, mag, dev); $b = \text{fir1(N, Wn, 'ftype', kaiser(N+1, beta))};$ where $fpts = [0.4 \ 0.55]$ $\text{mag} = \begin{bmatrix} 0 & 1 \end{bmatrix}$ $dev = [0.02 \ 0.02]$

• Plot of gain response

• Example - Design using a Hamming window an FIR filter of order 100 withthree different constant magnitude levels: 0.3 in the frequency range [0, 0.28], 1.0 in the frequency range [0.3, 0.5], and 0.7 in the frequency range [0.52, 1.0]

- Code fragment to use
	- $b = \text{fir2}(100, \text{ fpts}, \text{mval})$;

where fpts = $[0 \t0.28 \t0.3 \t0.5 \t0.52 \t1];$

mval = $[0.3 \ 0.3 \ 1.0 \ 1.0 \ 0.7 \ 0.7];$

