
Copyright © 2001, S. K. Mitra1

Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• A digital filter structure can be described in
the time-domain by a set of equations
relating the output sequence to the input
sequence and, in some cases, one or more
internally generated sequences

• Consider

Copyright © 2001, S. K. Mitra2

Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• This structure, in the time-domain, is
described by the set of equations

]1[][45 −= nwnw

][][][51 nwnxnw α−=
][][][312 nwnwnw δ−=

]1[][23 −= nwnw
][][][234 nwnwnw ε+=

][][][51 nwnwny γβ +=

Copyright © 2001, S. K. Mitra3

Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• The equations cannot be implemented in the
order shown with each variable on the left
side computed before the variable below is
computed

• For example, computation of in the
1st step requires the knowledge of
which is computed in the 5th step

• Likewise, computation of in the 2nd
step requires the knowledge of that is
computed in the 3rd step

][1 nw
][5 nw

][2 nw
][3 nw

Copyright © 2001, S. K. Mitra4

Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• This ordered set of equations is said to be
noncomputable

• Suppose we reorder these equations
]1[][23 −= nwnw
]1[][45 −= nwnw

][][][51 nwnxnw α−=
][][][312 nwnwnw δ−=

][][][51 nwnwny γβ +=
][][][234 nwnwnw ε+=

Copyright © 2001, S. K. Mitra5

Matrix Representation ofMatrix Representation of
Digital Filter StructuresDigital Filter Structures

• This ordered set of equations is computable
• In most practical applications, equations

describing a digital filter structure can be
put into a computable order by inspection

• A simple way to examine the computability
of equations describing a digital filter
structure is by writing the equations in a
matrix form

Copyright © 2001, S. K. Mitra6

Matrix RepresentationMatrix Representation
• A matrix representation of the first ordered

set of equations is











































γβ

ε

δ−
α−

+





















=























][
][
][
][
][
][

0000
000000
00010
000000
00001
00000

0
0
0
0
0

][

][
][
][
][
][
][

5
4
3
2
1

5
4
3
2
1

ny
nw
nw
nw
nw
nwnx

ny
nw
nw
nw
nw
nw























−
−
−
−
−
−





















+

]1[
]1[
]1[
]1[
]1[
]1[

000000
001000
000000
000010
000000
000000

5

4

3

2

1

ny
nw
nw
nw
nw
nw

Copyright © 2001, S. K. Mitra7

Matrix RepresentationMatrix Representation
• In compact form
 y[n] = x[n] + F y[n] + G y[n - 1]

where





















=

000000
001000
000000
000010
000000
000000

G,

0000
000000
00010
000000
00001
00000




















−

−

=

γβ

ε

δ
α

F

[]Tnynwnwnwnwnwn][][][][][][][54321=y

[]Tnxn 00000][][=x

Copyright © 2001, S. K. Mitra8

Matrix RepresentationMatrix Representation
• For the computation of present value of a

particular signal variable, nonzero entries in
the corresponding rows of matrices F and G
determine the variables whose present and
previous values are needed

• If a diagonal element of F is nonzero, then
computation of present value of the
corresponding variable requires the
knowledge of its present value implying
presence of a delay-free loop

Copyright © 2001, S. K. Mitra9

Matrix RepresentationMatrix Representation
• Any nonzero entries in the same row above

the main diagonal of F imply that the
computation of present value of the
corresponding variable requires present
values of other variables not yet computed,
making the set of equations noncomputable

• Hence, for computability all elements of F
matrix on the diagonal and above diagonal
must be zeros

Copyright © 2001, S. K. Mitra10

Matrix RepresentationMatrix Representation

• In the F matrix for the first ordered set of
equations, diagonal elements are all zeros,
indicating absence of delay-free loops

• However, there are nonzero entries above
the diagonal in the first and second rows of
F indicating that the set of equations are not
in proper order for computation

Copyright © 2001, S. K. Mitra11

Matrix RepresentationMatrix Representation
• The F matrix for the second ordered set of

equations is

which is seen to satisfy the computability
condition





















−
−=

00001
0000
00010
00000
000000
000000

ε
βγ

δ
αF

Copyright © 2001, S. K. Mitra12

Precedence GraphPrecedence Graph
• The precedence graph can be used to test

the computability of a digital filter structure
and to develop the proper ordering sequence
for a set of equations describing a
computable structure

• It is developed from the signal-flow graph
description of the digital filter structure in
which independent and dependent signal
variables are represented by nodes, and the
multiplier and delay branches are
represented by directed branches

Copyright © 2001, S. K. Mitra13

Precedence GraphPrecedence Graph

• The directed branch has an attached symbol
denoting the branch gain or transmittance

• For a multiplier branch, the branch gain is
the multiplier coefficient value

• For a delay branch, the branch gain is
simply 1−z

Copyright © 2001, S. K. Mitra14

Precedence GraphPrecedence Graph
• The signal-flow graph representation of

is shown below

Copyright © 2001, S. K. Mitra15

Precedence GraphPrecedence Graph
• A reduced signal-flow graph is then

developed by removing the delay branches
and all branches going out of the input node

• The reduced signal-flow graph of the example
digital filter structure is shown below

Copyright © 2001, S. K. Mitra16

Precedence GraphPrecedence Graph

• The remaining nodes in the reduced signal-
flow graph are grouped as follows:

• All nodes with only outgoing branches are
grouped into one set labeled

• Next, the set is formed containing
nodes coming in only from one or more
nodes in the set and have outgoing
branches to the other nodes

{ }1N
{ }2N

{ }1N

Copyright © 2001, S. K. Mitra17

Precedence GraphPrecedence Graph
• Then, form the set containing nodes

that have branches coming in only from one
or more nodes in the sets and ,
and have outgoing branches to other nodes

• Continue the process until there is a set of
nodes containing only incoming
branches

• The rearranged signal-flow graph is called a
precedence graph

{ }2N{ }1N

{ }3N

}{ fN

Copyright © 2001, S. K. Mitra18

Precedence GraphPrecedence Graph

• Since signal variables belonging to do
not depend on the present values of other
signal variables, these variables should be
computed first

• Next, signal variables belonging to
can be computed since they depend on the
present values of signal variables contained
in that have already been computed

}{ 1N

}{ 1N

}{ 2N

Copyright © 2001, S. K. Mitra19

Precedence GraphPrecedence Graph
• This is followed by the computation of

signal variables in , , etc.
• Finally, in the last step the signal variables

in are computed
• This process of sequential computation

ensures the development of a valid
computational algorithm

• If there is no final set containing only
incoming branches, the digital filter
structure is noncomputable

}{ 3N }{ 4N

}{ fN

}{ fN

Copyright © 2001, S. K. Mitra20

Precedence GraphPrecedence Graph

• For the example precedence graph,
pertinent groupings of node variables are:

]}[],[{}{ 531 nwnw=N
]}[{}{ 12 nw=N
]}[{}{ 23 nw=N

]}[],[{}{ 44 nynw=N

Copyright © 2001, S. K. Mitra21

Precedence GraphPrecedence Graph
• Precedence graph redrawn according to the

above groupings is as shown below

• Since the final node set has only
incoming branches, the structure is
computable

}{ 4N

Copyright © 2001, S. K. Mitra22

Structure VerificationStructure Verification
• A simple method to verify that the structure

developed is indeed characterized by the
prescribed transfer function H(z)

• Consider for simplicity a causal 3rd order
IIR transfer function

• If {h[n]} denotes its impulse response, then

3
3

2
2

1
1

3
3

2
2

1
10

1)(
)()(−−−

−−−

+++
+++==

zdzdzd
zpzpzpp

zD
zPzH

∑=
∞

=

−

0
][)(

n

nznhzH

Copyright © 2001, S. K. Mitra23

Structure VerificationStructure Verification
• Note P(z) = H(z)D(z)

which is equivalent to
• Evaluate above convolution sum for :

1,][0
0

== ∑
=

− ddkhp
n

k
knn

]0[0 hp =
11]0[]1[dhhp +=

212]0[]1[]2[dhdhhp ++=
3213]0[]1[]2[]3[dhdhdhhp +++=
321]1[]2[]3[]4[0 dhdhdhh +++=
321]2[]3[]4[]5[0 dhdhdhh +++=
321]3[]4[]5[]6[0 dhdhdhh +++=

60 ≤≤ n

Copyright © 2001, S. K. Mitra24

Structure VerificationStructure Verification
• In matrix form we get

• In partitioned form above matrix equation
can be written as







































=























3

2

1
3

2

1

0

1

]3[]4[]5[]6[
]2[]3[]4[]5[
]1[]2[]3[]4[
]0[]1[]2[]3[

0]0[]1[]2[
00]0[]1[
000]0[

0
0
0 d

d
d

hhhh
hhhh
hhhh
hhhh

hhh
hh

h

p
p
p
p
























=













dHh

H

0

p
L

M
LLLL

1

2

1

Copyright © 2001, S. K. Mitra25

Structure VerificationStructure Verification
where

• Solving second equation we get

• Substituting above in the first equation we
get

• In the case of an N-th order IIR filter, the
coefficients of its transfer function can be
determined from the first 2N+1 impulse
response samples

,1
1 



= dHp [] 



= dHh0 1

2

hHd 1
2
−−=






−= − hHHp 1

2
1

1

Copyright © 2001, S. K. Mitra26

Structure VerificationStructure Verification
• Example - Consider the causal transfer

function

• Here

• Hence

L++−−+=
++
++

= −−−−
−−

−−
4321

21

21

133542
21
362)(zzzz
zz
zzzH

13]4[,3]3[,5]2[,4]1[,2]0[=−=−=== hhhhh































−−
−−

−=



















2

12

1

0

1

5313
453
245
024
002

0
0 d

dp
p
p

Copyright © 2001, S. K. Mitra27

Structure VerificationStructure Verification

• Solving we get

and





=



−







−−
−=



 −

2
1

13
3

53
45 1

2
1

d
d












=

























−
=













3
6
2

2
1
1

245
024
002

2

1

0

p
p
p

Copyright © 2001, S. K. Mitra28

Structure Simulation andStructure Simulation and
Verification Using MATLABVerification Using MATLAB

• For computer simulation, the structure is
described in the form of a set of equations

• These equations must be ordered properly
to ensure computability

• The procedure is to express the output of
each adder and filter output variable in
terms of all incoming signal variables

Copyright © 2001, S. K. Mitra29

Structure Simulation andStructure Simulation and
Verification Using MATLABVerification Using MATLAB

• Consider the structure

• A valid computational algorithm involving
the least number of equations is

],1[][][41 −−= nwnxnw α
],1[][][212 −−= nwnwnw δ
],[]1[][224 nwnwnw ε+−=

]1[][][41 −+= nwnwny γβ

Copyright © 2001, S. K. Mitra30

Structure Simulation andStructure Simulation and
Verification Using MATLABVerification Using MATLAB

• This set of equations is evaluated for
increasing values of n starting at n = 0

• At the beginning, the initial conditions
and can be set to any desired values,
which are typically zero

• From the computed impulse response
samples, the structure can be verified by
determining the transfer function
coefficients using the M-file strucver

]1[2 −w
]1[4 −w

Copyright © 2001, S. K. Mitra31

Simulation of IIR FiltersSimulation of IIR Filters
• The M-file filter implements the IIR

filter in the transposed direct form II
structure shown below for a 3rd order filter

• As indicated in the figure, d(1) has been
assumed to be equal to 1

Copyright © 2001, S. K. Mitra32

Simulation of IIR FiltersSimulation of IIR Filters
• Basic forms of this function are
 y = filter(num,den,x)
 [y,sf]=filter(num,den,x,si)

where x is the input vector, y is the output
vector, si is the vector of initial conditions
of the delay variables, and sf is the vector
of final values of the delay variables

• For the simulation of a causal IIR filter
realized in direct form II structure use the
M-file direct2

Copyright © 2001, S. K. Mitra33

Simulation of IIR FiltersSimulation of IIR Filters
• For the simulation of overlap-add filtering

method use the M-file fftfilt or the
second form of the M-file filter

• For the simulation of tapped cascaded
lattice filter structures, use the M-file
latcfilt

• The M-files filter, direct2 and
latcfilt can also be used to simulate
FIR filters

• The M-file filtfilt implements the
zero-phase filtering

Copyright © 2001, S. K. Mitra34

Discrete Fourier TransformDiscrete Fourier Transform
ComputationComputation

• The N-point DFT X[k] of a length-N
sequence x[n], , is defined by

where

• Direct computation of all N samples of
{X[k]} requires complex multiplications
and complex additions

10 −≤≤ Nn
10,][][1

0 −≤≤=∑ −
= NkWnxkX N

n
kn
N

)1(−NN

Nj
N eW /2π−=

2N

Copyright © 2001, S. K. Mitra35

Goertzel’sGoertzel’s Algorithm Algorithm
• A recursive DFT computation scheme that

makes use of the identity

obtained using the periodicity of
• Using this identity we can write

nk
NW −

1=−kN
NW

∑=
−

=

1

0
][][

N k
NWxkX

l

ll

∑ ∑==
−

=

−

=

−−− 1

0

1

0

)(][][
N N Nk

N
k
N

kN
N WxWxW

l l

ll ll

Copyright © 2001, S. K. Mitra36

Goertzel’sGoertzel’s Algorithm Algorithm
• Define
• Note: is the direct convolution of the

causal sequence

with a causal sequence

• Observe

∑= =
−−n nk

Nek Wxny 0
)(][][l
ll

][nyk




≥<
−≤≤= Nnn

Nnnxnxe ,0,0
10],[][





<
≥=

−

0,0
0,][

n
nWnh

kn
Nk

Nnk nykX ==][][

Copyright © 2001, S. K. Mitra37

Goertzel’sGoertzel’s Algorithm Algorithm
• z-transform of

yields

where
and

• Thus, is the output of an initially
relaxed LTI digital filter with an
input and, when n = N,

∑= =
−−n nk

Nek Wxny 0
)(][][l
ll

)1/(1]}[{)(1−−−== zWnhzH k
Nkk Z

]}[{)(nxzX ee Z=

)()(
1

)(]}[{)(1 zXzH
zW

zXnyzY ekk
N

e
kk =

−
== −−Z

][nyk

][][kXNyk =
)(zHk

][nxe

Copyright © 2001, S. K. Mitra38

Goertzel’sGoertzel’s Algorithm Algorithm
• Structural interpretation of the algorithm -

• Thus a recursive DFT computation scheme
is

with and

NnnyWnxny k
k

Nek ≤≤−+= − 0],1[][][

0]1[=−ky 0][=Nxe

Copyright © 2001, S. K. Mitra39

Goertzel’sGoertzel’s Algorithm Algorithm
• Since a complex multiplication can be

implemented with 4 real multiplications and
2 real additions, computation of each new
value of requires 4 real
multiplications and 4 real additions

• Thus computation of involves
4N real multiplications and 4N real
additions
 Computation of all N DFT samples
requires real multiplications and
real additions

][][NykX k=

][nyk

24N 24N

Copyright © 2001, S. K. Mitra40

Goertzel’sGoertzel’s Algorithm Algorithm
• Recall, direct computation of all N samples of

{X[k]} requires complex multiplications
and complex additions

• Equivalently, direct computation of all N
samples of {X[k]} requires real
multiplications and real additions

• Thus, Goertzel’s algorithm requires 2N more
real additions than the direct DFT
computation

2N
)1(−NN

)24(−NN

24N

Copyright © 2001, S. K. Mitra41

Goertzel’sGoertzel’s Algorithm Algorithm
• Algorithm can be made computationally

more efficient by observing that can
be rewritten as

resulting in a second-order realization

)1)(1(
1

1
1)(11

1

1 −−−

−

−− −−
−=

−
=

zWzW
zW

zW
zH k

N
k

N

k
N

k
N

k

21

1

)/2cos(21
1

−−

−

+−
−=

zzNk
zW k

N
π

)(zHk

Copyright © 2001, S. K. Mitra42

Goertzel’sGoertzel’s Algorithm Algorithm

• DFT computation equations are now
]1[)/2cos(2][][−π+= nvNknxnv kek

Nnnvk ≤≤−− 0],2[
]1[][][][−−== NvWNvNykX k

k
Nkk

Copyright © 2001, S. K. Mitra43

Goertzel’sGoertzel’s Algorithm Algorithm
• Computation of each sample of

involves only 2 real multiplications and 4
real additions

• Complex multiplication by needs to
be performed only once at n = N

• Thus, computation of one sample of X[k]
requires real multiplications and

real additions
• Computation of all N DFT samples requires

 real multiplications and
 real additions

k
NW

)42(+N
)44(+N

)1(4 +NN
)2(2 +NN

][nvk

Copyright © 2001, S. K. Mitra44

Goertzel’sGoertzel’s Algorithm Algorithm
• In the realization of , the multiplier

in the feedback path is

which is same as that in the realization of
 i.e., the intermediate

variables computed to determine X[k] can
again be used to determine

• Only difference between the two structures
is the feed-forward multiplier which is now

 that is the complex conjugate of

)(zH kN−

)(zHk

)/2cos(2)/)(2cos(2 NkNkN ππ =−

],[][nvnv kkN =−

][kNX −

,k
NW − k

NW

Copyright © 2001, S. K. Mitra45

Goertzel’sGoertzel’s Algorithm Algorithm
• Thus, computation of X[k] and

require 2(N+4) real multiplications and
4(N+2) real additions

• Computation of all N DFT samples require
approximately real multiplications and
approximately real additions

• Number of real multiplications is about one-
fourth and number of real additions is about
one-half of those needed in direct DFT
computation

][kNX −

2N
22N

Copyright © 2001, S. K. Mitra46

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Consider a sequence x[n] of length
• Using a 2-band polyphase decomposition

we can express its z-transform as

where
)()()(2

1
12

0 zXzzXzX −+=

∑=∑=
−

=

−−

=

− 1)2/(

0

1)2/(

0
00]2[][)(

N

n

nN

n

n znxznxzX

∑ +=∑=
−

=

−−

=

− 1)2/(

0

1)2/(

0
11]12[][)(

N

n

nN

n

n znxznxzX

µ= 2N

Copyright © 2001, S. K. Mitra47

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Evaluating on the unit circle at N equally
spaced points we
arrive at the N-point DFT of x[n]:

where and are the (N/2)-point
DFTs of the (N/2)-length sequences
and

,10, −≤≤= − NkWz k
N

],[][][2/12/0 N
k
NN kXWkXkX 〉〈+〉〈=

10 −≤≤ Nk
][0 kX][1 kX

][1 nx
][0 nx

Copyright © 2001, S. K. Mitra48

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• i.e.,

10,]2[
1)2/(

0 22/ −≤≤= ∑
−

=

N

r

Nrk
N kWrx

∑
−

=
=

1)2/(

0
2/00][][

N

r

rk
NWrxkX

∑
−

=
=

1)2/(

0
2/11][][

N

r

rk
NWrxkX

10,]12[
1)2/(

0 22/ −≤≤+= ∑
−

=

N

r

Nrk
N kWrx

Copyright © 2001, S. K. Mitra49

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Block-diagram interpretation

k
NW

2

2

z
point2 −

N

DFT

point2 −
N

DFT +][nx][kX
][0 nx

][1 nx][2/1 NkX 〉〈

][2/0 NkX 〉〈

k
NW

Copyright © 2001, S. K. Mitra50

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Flow-graph representation

Copyright © 2001, S. K. Mitra51

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Direct computation of the N-point DFT
requires complex multiplications and

 complex additions
• Computation of the N-point DFT using the

modified scheme requires the computation of
two (N/2)-point DFTs that are then combined
with N complex multiplications and N
complex additions resulting in a total of

 complex multiplications and
approximately complex additions

2N
22 NNN ≈−

NN +)2/(2

NN +)2/(2

Copyright © 2001, S. K. Mitra52

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• For
• Continuing the process we can express

and as a weighted combination of
two (N/4)-point DFTs

• For example, we can write

where and are the (N/4)-
point DFTs of the (N/4)-length sequences

 and

22)2/(,3 NNNN <+≥

][1 kX
][0 kX

],[][][4/012/4/000 N
k
NN kXWkXkX 〉〈+〉〈=

1)2/(0 −≤≤ Nk
][00 kX][01 kX

]2[][000 nxnx =]12[][001 += nxnx

Copyright © 2001, S. K. Mitra53

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Likewise, we can express

where and are the (N/4)-
point DFTs of the (N/4)-length sequences

 and

],[][][4/112/4/101 N
k
NN kXWkXkX 〉〈+〉〈=

1)2/(0 −≤≤ Nk
][10 kX][11 kX

]12[][111 += nxnx]2[][110 nxnx =

Copyright © 2001, S. K. Mitra54

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Block-diagram representation of the two-
stage algorithm

k
NW

2

z
point4 −

N

DFT

point4 −
N

DFT +][nx][kX
][00 nx

][01 nx][4/01 NkX 〉〈

][4/00 NkX 〉〈

k
NW 2/

k
NW2

2

z
point4 −

N

DFT

point4 −
N

DFT +
][10 nx

][11 nx][4/11 NkX 〉〈

][4/10 NkX 〉〈

k
NW 2/

+

z

22

2

][0 nx

][1 nx

][2/0 NkX 〉〈

][2/1 NkX 〉〈

k
NW

Copyright © 2001, S. K. Mitra55

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Flow-graph representation

Copyright © 2001, S. K. Mitra56

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• In the flow-graph shown N =8
• Hence, the (N/4)-point DFT here is a 2-

point DFT and no further decomposition is
possible

• The four 2-point DFTs,
can be easily computed

• For example
1,0],4[]0[][200 =+= kxWxkX k

1,0,],[=jikXij

Copyright © 2001, S. K. Mitra57

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Corresponding flow-graph of the 2-point
DFT is shown below obtained using the
identity kN

N
k WW)2/(

2 =

Copyright © 2001, S. K. Mitra58

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Complete flow-graph of the 8-point DFT is
shown below

Copyright © 2001, S. K. Mitra59

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• The flow-graph consists of 3 stages
• First stage computes the four 2-point DFTs
• Second stage computes the two 4-point DFTs
• Last stage computes the desired 8-point DFT
• The number of complex multiplications and

additions at each stage is equal to 8, the size
of the DFT

Copyright © 2001, S. K. Mitra60

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Total number of complex multiplications
and additions to compute all 8 DFT samples
is equal to 8 + 8 + 8 = 24 =

• In the general case when , number of
stages for the computation of the ()-point
DFT in the fast algorithm will be

• Total number of complex multiplications
and additions to compute all N DFT
samples is)(log2 NN

µ2

µ2=N

N2log=µ

38×

Copyright © 2001, S. K. Mitra61

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• In developing the count, multiplications
with and have been
assumed to be complex

• Also the symmetry property of

has not been taken advantage of
• These properties can be exploited to reduce

the computational complexity further

10 =NW 12/ −=N
NW

k
N

kN
N WW −=+)2/(

Copyright © 2001, S. K. Mitra62

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Examination of the flow-graph

reveals that each stage of the DFT
computation process employs the same
basic computational module

Copyright © 2001, S. K. Mitra63

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• In the basic module two output variables are
generated by a weighted combination of
two input variables as indicated below
where and

• Basic computational module is called a
butterfly computation

µ,,2,1 K=r 1,,1,0, −=βα NK

Copyright © 2001, S. K. Mitra64

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Input-output relations of the basic module
are:

• Substituting in the second
equation given above we get

][][][1 βαα rNrr W Ψ+Ψ=Ψ +
l

][][][)2/(
1 βαβ r

N
Nrr W Ψ+Ψ=Ψ +

+
l

][][][1 βαβ rNrr W Ψ−Ψ=Ψ +
l

ll
N

N
N WW −=+)2/(

Copyright © 2001, S. K. Mitra65

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Modified butterfly computation requires
only one complex multiplication as
indicated below

• Use of the above modified butterfly
computation module reduces the total
number of complex multiplications by 50%

Copyright © 2001, S. K. Mitra66

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• New flow-graph using the modified
butterfly computational module for N = 8

Copyright © 2001, S. K. Mitra67

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Computational complexity can be reduced
further by avoiding multiplications by ,

 , , and
• The DFT computation algorithm described

here also is efficient with regard to memory
requirements

• Note: Each stage employs the same butterfly
computation to compute and
from and

10 =NW
12/ −=N

NW jW N
N =4/ jW N

N −=4/3

][1 α+Ψr][1 β+Ψr
][βrΨ][αrΨ

Copyright © 2001, S. K. Mitra68

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• At the end of computation at any stage,
output variables can be stored in the
same registers previously occupied by the
corresponding input variables

• This type of memory location sharing is
called in-place computation resulting in
significant savings in overall memory
requirements

][1 mr+Ψ

][mrΨ

Copyright © 2001, S. K. Mitra69

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• In the DFT computation scheme outlined,
the DFT samples X[k] appear at the output
in a sequential order while the input
samples x[n] appear in a different order

Copyright © 2001, S. K. Mitra70

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Thus, a sequentially ordered input x[n] must
be reordered appropriately before the fast
algorithm described by this structure can be
implemented

• To understand the input reordering scheme
represent the arguments of input samples
x[n] and their sequentially ordered new
representations in binary forms][1 mΨ

Copyright © 2001, S. K. Mitra71

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• The relations between the arguments m and
n are as follows:

• Thus, if () represents the index n of
x[n], then the sample appears at
the location as before
the DFT computation is started

• i.e., location of is in bit-reversed
order from that of x[n]

111011101001110010100000:
111110101100011010001000:

n
m

012 bbb
][012 bbbx

210 bbbm =][2101 bbbΨ

][1 mΨ

Copyright © 2001, S. K. Mitra72

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Alternative forms of the fast DFT
algorithms can be obtained by reordering
the computations such as input in normal
order and output in bit-reversed order, and
both input and output in normal order

• The fast algorithm described assumes that
the length of x[n] is a power of 2

• If it is not, the length can be extended by
zero-padding and make the length a power
of 2

Copyright © 2001, S. K. Mitra73

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Even after zero-padding, the DFT
computation based on the fast algorithm
may be computationally more efficient than
a direct DFT computation of the original
shorter sequence

• The fast DFT computation schemes
described are called decimation-in-time
(DIT) fast Fourier transform (FFT)
algorithms as input x[n] is first decimated to
form a set of subsequences before the DFT
is computed

Copyright © 2001, S. K. Mitra74

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• For example, the relation between x[n] and
its even and odd parts, and ,
generated by the first stage of the DIT
algorithm is given by

]7[]5[]3[]1[:][
]6[]4[]2[]0[:][

]7[]6[]5[]4[]3[]2[]1[]0[:][

1

0
xxxxnx
xxxxnx

xxxxxxxxnx

][0 nx][1 nx

Copyright © 2001, S. K. Mitra75

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Likewise, the relation between x[n] and the
sequences , , , and ,
generated by the two-stage decomposition
of the DIT algorithm is given by

][00 nx][01 nx][11 nx][10 nx

]7[]3[:][
]5[]1[:][
]6[]2[:][
]4[]0[:][

]7[]6[]5[]4[]3[]2[]1[]0[:][

11

10

01

00

xxnx
xxnx
xxnx
xxnx

xxxxxxxxnx

Copyright © 2001, S. K. Mitra76

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• The subsequences , , , and
 can be generated directly by a factor-

of-4 decimation process leading to a single-
stage decomposition as shown on the next
slide

][00 nx][01 nx][10 nx
][11 nx

Copyright © 2001, S. K. Mitra77

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

+][kX

][4/01 NkX 〉〈

][4/00 NkX 〉〈

k
NW 2/

+

][4/11 NkX 〉〈

][4/10 NkX 〉〈

k
NW 2/

+

][2/0 NkX 〉〈

][2/1 NkX 〉〈

k
NW

k
NW

4 point4 −
N

DFT

point4 −
N

DFT
][nx

][00 nx

][01 nx

k
NW4

4 point4 −
N

DFT

point4 −
N

DFT
][10 nx

][11 nx

z

4

z

z

Copyright © 2001, S. K. Mitra78

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• Radix-R FFT algorithm - A each stage the
decimation is by a factor of R

• Depending on N, various combinations of
decompositions of X[k] can be used to
develop different types of DIT FFT
algorithms

• If the scheme uses a mixture of decimations
by different factors, it is called a mixed
radix FFT algorithm

Copyright © 2001, S. K. Mitra79

Decimation-in-Time FFTDecimation-in-Time FFT
AlgorithmAlgorithm

• For N which is a composite number
expressible in the form of a product of
integers:

total number of complex multiplications
(additions) in a DIT FFT algorithm based
on a -stage decomposition is given byν

νrrrN L21 ⋅=

Nr
i

i 






∑ −
=

ν
ν

1

Copyright © 2001, S. K. Mitra80

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• Consider a sequence x[n] of length
• Its z-transform can be expressed as

where

µ2=N

)()()(2/ zXzzXzX b
N

a
−+=

∑
−

=

−=
1)2/(

0
][)(

N

n

n
a znxzX

∑
−

=

−+=
1)2/(

0 2
][)(

N

n

nN
b znxzX

Copyright © 2001, S. K. Mitra81

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• Evaluating X(z) on the unit circle at
we get

which can be rewritten using the identity
 as

∑=
−

=

1)2/(

0
][][

N

n

nk
NWnxkX

∑ ++
−

=

1)2/(

0 2
)2/(][

N

n

nk
N

NkN
N WnxW

nk
N

N

n

Nk WnxnxkX ∑ +−+=
−

=

1)2/(

0 2
])[)1(][(][

kkN
NW)1()2/(−=

Copyright © 2001, S. K. Mitra82

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• For k even

• For k odd

ll n
N

N

n

N WnxnxX 21)2/(

0 2
])[][(]2[∑ ++=

−

=
10,])[][(

22/
1)2/(

0 2
−≤≤∑ ++=

−

=

Nn
N

N

n

N Wnxnx ll

10,])[][(
22/

1)2/(

0 2
−≤≤∑ +−=

−

=

Nn
N

n
N

N

n

N WWnxnx ll

)12(1)2/(

0 2
])[][(]12[+−

=
∑ +−=+ ll n

N
N

n

N WnxnxX

Copyright © 2001, S. K. Mitra83

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• We can write

where

)2(
1)2/(

0
0][]2[ll n

N

N

n
WnxX ∑

−

=
=

10,][]12[
2

)2(1)2/(

0
1 −≤≤∑=+

−

=

Nn
N

N

n
WnxX ll l

]),[][(][
20 nxnxnx N ++=

10,])[][(][
221 −≤≤+−= Nn

N
N nWnxnxnx

Copyright © 2001, S. K. Mitra84

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• Thus and are the (N/2)-
point DFTs of the length-(N/2) sequences

 and
• Flow-graph of the first-stage of the DFT

algorithm is shown below

]2[lX]12[+lX

][0 nx][1 nx

Copyright © 2001, S. K. Mitra85

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• Here the input samples are in sequential
order, while the output DFT samples appear
in a decimated form with the even-indexed
samples appearing as the output of one
(N/2)-point DFT and the odd-indexed
samples appearing as the output of the other
(N/2)-point DFT

Copyright © 2001, S. K. Mitra86

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• We next express the even- and odd-indexed
samples of each one of the two (N/2)-point
DFTs as a sum of two (N/4)-point DFTs

• Process is continued until the smallest DFTs
are 2-point DFTs

Copyright © 2001, S. K. Mitra87

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• Complete flow-graph of the decimation-in-
frequency FFT computation scheme for N = 8

Copyright © 2001, S. K. Mitra88

Decimation-in-FrequencyDecimation-in-Frequency
FFT AlgorithmFFT Algorithm

• Computational complexity of the radix-2
DIF FFT algorithm is same as that of the
DIT FFT algorithm

• Various forms of DIF FFT algorithm can
similarly be developed

• The DIT and DIF FFT algorithms described
here are often referred to as the Cooley-
Tukey FFT algorithms

Copyright © 2001, S. K. Mitra89

Inverse DFT ComputationInverse DFT Computation

• An FFT algorithm for computing the DFT
samples can also be used to calculate
efficiently the inverse DFT (IDFT)

• Consider a length-N sequence x[n] with an
N-point DFT X[k]

• Recall

∑=
−

=

−1

0
][1][

N

k

nk
NWkX

N
nx

Copyright © 2001, S. K. Mitra90

Inverse DFT ComputationInverse DFT Computation

• Multiplying both sides by N and taking the
complex conjugate we get

• Right-hand side of above is the N-point
DFT of a sequence X*[k]

∑=
−

=

1

0
][*][*

N

k

nk
NWkXnNx

Copyright © 2001, S. K. Mitra91

Inverse DFT ComputationInverse DFT Computation
• Desired IDFT x[n] is then obtained as

• Inverse DFT computation is shown below:

*
][*1][

1

0 






∑=
−

=

N

k

nk
NWkX

N
nx

{X[k]}Re Re {x[n]}

Im{x[n]}Im {X[k]}
1−

N
1−

N
1

N-point
DFT

	Matrix Representation of Digital Filter Structures
	Matrix Representation of Digital Filter Structures
	Matrix Representation of Digital Filter Structures
	Matrix Representation of Digital Filter Structures
	Matrix Representation of Digital Filter Structures
	Matrix Representation
	Matrix Representation
	Matrix Representation
	Matrix Representation
	Matrix Representation
	Matrix Representation
	Precedence Graph
	Precedence Graph
	Precedence Graph
	Precedence Graph
	Precedence Graph
	Precedence Graph
	Precedence Graph
	Precedence Graph
	Precedence Graph
	Precedence Graph
	Structure Verification
	Structure Verification
	Structure Verification
	Structure Verification
	Structure Verification
	Structure Verification
	Structure Simulation and Verification Using MATLAB
	Structure Simulation and Verification Using MATLAB
	Structure Simulation and Verification Using MATLAB
	Simulation of IIR Filters
	Simulation of IIR Filters
	Simulation of IIR Filters
	Discrete Fourier Transform Computation
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Goertzel’s Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Time FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Decimation-in-Frequency FFT Algorithm
	Inverse DFT Computation
	Inverse DFT Computation
	Inverse DFT Computation

