Matrix Representation of

Digital Filter Structures

o A digital filter structure can be described in
the time-domain by a set of equations
relating the output sequence to the input
sequence and, In some cases, one or more
Internally generated sequences

e Consider

X D
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Matrix Representation of

Digital Filter Structures

his structure, 1n the time-domain, Is
described by the set of equations

wi[n] =X Nn] —aws[N]
I=w[n] -6 ws[n]
=Wo[Nn—-1]

= W[N] + & W[N]
=W,[n-1]

yin] = gwiln]+y ws[n]

5 D5 O 2
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Matrix Representation of

Digital Filter Structures

The equations cannot be implemented in the
order shown with each variable on the | eft
side computed before the variable below Is
computed

For example, computation of w[n] in the
1st step requires the knowledge of ws[ ]
which is computed in the 5th step

Likewise, computation of w,[n] in the 2nd
step requires the knowledge of wy[n] that is
computed in the 3rd step
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Matrix Representation of

Digital Filter Structures

 Thisordered set of equationsis said to be
noncomputable

e Suppose we reorder these equations
W3_n_ =W2[n 1]
ws[n] = wy[n—1]
n] = X(n] —a e[
W[N] =wy[n] -6 wy[n]
yln] = gw[n] +y ws[n]
Wy[N] = ws[n] + e w,[N]
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Matrix Representation of
Digital Filter Structures

 Thisordered set of equationsis computable

e In most practical applications, equations
describing adigital filter structure can be
put into a computable order by inspection

o A smple way to examine the computability
of equations describing adigital filter
structure is by writing the equationsin a
matrix form
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Matrix Representation

o A maitrix representation of the first ordered
set of equatlons IS

| a1 fo 0 0 0 —a 0] 4N
W[ N 0|10 -580 0 ofwn
Winj| | O +OO O O O Ofwn
wn]|=| 0 |10 e 1 0 0 Ofwn
LR AR
yin] | LOJ B O v Oy

0 0 0 0 0 o] Wnh-1

0 0000 OffWln-1

.{01 00 0 ofwln-1

0 000 0 Ofw[n-1

0 0 0 10 0fw[n-1

_oooooo_y[n1]
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Matrix Representation
e In compact form
yln] =x[n] + Fy[n] + Gy[n- 1]
where
yin]=[wnl wy[n] wn] w[n] wn] yn]]

x[n]=[xn] 0 0 0 0 Of

0.0 0 0 -a O 00000O00O
1 0.-5§ 0 0 O 00000O00O
~_|0 0 6.0 0 0 5_[010000
100 e 1 0.0 O >7|000O0O0O
00 0 0 0 0 000100
0 0 0 y 0O 000O0GO0O
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Matrix Representation

 For the computation of present value of a
particular signal variable, nonzero entriesin
the corresponding rows of matrices F and G
determine the variables whose present and
previous values are needed

 |f adiagonal element of F isnonzero, then
computation of present value of the
corresponding variable requires the
knowledge of its present value implying
presence of a delay-free loop
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Matrix Representation

e Any nonzero entries in the same row above
the main diagonal of F imply that the
computation of present value of the
corresponding variable reguires present
values of other variables not yet computed,
making the set of equations noncomputable

e Hence, for computability all elements of F

maitrix on the diagonal and above diagonal
must be zeros

Copyright © 2001, S. K. Mitra
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Matrix Representation

 Inthe F matrix for thefirst ordered set of
equations, diagonal elements are all zeros,
Indicating absence of delay-free loops

 However, there are nonzero entries above
the diagonal in the first and second rows of
F indicating that the set of equations are not
IN proper order for computation

Copyright © 2001, S. K. Mitra
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Matrix Representation

e The F matrix for the second ordered set of
equations|s

O O

O O
0

1

g 0

0 ¢

which Is seen to satisfy the computability
condition
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Precedence Graph

* The precedence graph can be used to test
the computability of adigital filter structure
and to develop the proper ordering sequence
for a set of equations describing a
computable structure

* It isdeveloped from the signal-flow graph

description of the digital filter structurein
which independent and dependent signal
variables are represented by nodes, and the
multiplier and delay branches are
represented by directed branches
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Precedence Graph

* The directed branch has an attached symbol
denoting the branch gain or transmittance

e For amultiplier branch, the branch gainis
the multiplier coefficient value

* For adelay branch, the branch gainis
smply z™
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Precedence Graph
e The signal-flow graph representation of

1S shown below

x[n] o // - l \ \ v[n]
W [u] w [rivﬂ [n] w [u] wy

B
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Precedence Graph

* A reduced signal-flow graph isthen
devel oped by removing the delay branches
and all branches going out of the input node

e Thereduced signal-flow graph of the example
digital filter structure is shown below
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Precedence Graph

e Theremaning nodes in the reduced signal-
flow graph are grouped as follows:

 All nodes with only outgoing branches are
grouped into one set labeled {7}

 Next, the set {N}isformed containing
nodes coming in only from one or more
nodesin the set {N;} and have outgoing
branches to the other nodes
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Precedence Graph

 Then, form the set {N3} containing nodes
that have branches coming in only from one
or more nodes in the sets{N;} and {N>},
and have outgoing branches to other nodes

 Continue the process until thereis a set of
nodes{N;} containing only incoming
branches

* Therearranged signal-flow graph iscalled a
precedence graph
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Precedence Graph

» Since signal variables belonging to{ N4} do
not depend on the present values of other
signal variables, these variables should be
computed first

* Next, signal variables belonging to{ N}
can be computed since they depend on the

present values of signal variables contained
in { Ny} that have aready been computed
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Precedence Graph

Thisisfollowed by the computation of
signal variablesin { N3}, {IN,}, etc.
Finally, in the last step the signal variables
in{ N} are computed

This process of sequential computation
ensures the development of avalid
computational algorithm

If thereisno fina set { N+ } containing only
Incoming branches, the digital filter
structure is noncomputable
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Precedence Graph

 For the example precedence graph,
pertinent groupings of node variables are:

{N g} ={wyg]
{No} ={wy]
{N 3} ={wy[n]}

n

n-

I}

W[N]}

{ N g} ={wy[n], y[n]}

20
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Precedence Graph

* Precedence graph redrawn according to the
above groupings is as shown below

» Sincethefina node set { N4} has only
Incoming branches, the structure is
computable
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Structure Verification

* A simple method to verify that the structure
developed is indeed characterized by the
prescribed transfer function H(z)

e Consider for smplicity acausal 3rd order
lIR transfer function

H (2) = P(2) _Po+ plz‘1 + pzz‘2 + p3z‘3
D(Z) 1+ dlz_l + d22_2 + d3Z_3
o If {N[n]} denotes itsimpulse response, then

H(z)= Shinjz™
n=0
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Structure Verification

 Note P(2) =H(2D(2 )
which isequivalentto  pn= > hkldy,do=1
« Evaluate above convolution Sim for 0< n<6:
Po = h[O]
Py = h[1] + h[O]dy
P2 = N 2]+ h[1]d; + h[0]d;
P3 = N3]+ N[ 2]d; + h[1]d, + h[0]d5
0= h[4]+ h[3]d; + h[2]d, + h[1]d5;
0=Nn[5]+ h[4]d; + h[3]d, + h[2]d5
0=h[6]+N5]d; + h[4]d, + h[3]d;

23 Copyright © 2001, S. K. Mitra




24

Structure Verification

e In matrlx form we get
ho] O

1]
'1[2

h[O]
1)

e In partltloned form above matrlx equation
can be written as

0

P
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Structure Verification

where
p-nf3] o-b ]

» Solving second eguation we get

d=-Hh
e Substituting above in the first equation we
get
P=H i)

e |nthe case of an N-th order IR filter, the
coefficients of its transfer function can be
determined from the first 2N+1 impulse

response samples
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Structure Verification

 Example - Consider the causal transfer

function
-1 —2
H (2) = 2+67Z +32

=2+47z'-57°-32°+13z7"% +--

1+z1+27°
e Here
N[0 =2, h[1] =4, h[2] = -5, h[3] = -3, h[4] =13

e Hence _ _

Po 2 0 0| _

P 4 2 0| 1

p,|=|-5 4 2 |d

02 -3 -5 4 di

0 13 -3 -5 °
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Structure Verification

e Solving we get

B RN R

and

~NO

1 2
1|=|6
2 3

Po 2
p|=| 4
P, | L™ o

|NOO|
| |




Structure Simulation and
Verification Using MATLAB

e For computer ssimulation, the structureis
described in the form of a set of equations

* These equations must be ordered properly
to ensure computability

* The procedure isto express the output of
each adder and filter output variable in
terms of all incoming signal variables
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Structure Simulation and
Verification Using MATLAB

e Consder the structure

W W,
X »(F)— W) >
-0 -9
B 3
A
Y * + + —1 —1 *
e \ W, Z W, W, z

A valid computational algorithm involving
the least number of equationsis

w,[n] =X[n]—aw,[n-1],
w,[n] = w[n] - S w,[n—1],
w,[n] =w,[n—-1] + ew,[n],
yin] = gwi[n]+y w,[n-1]

Copyright © 2001, S. K. Mitra
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Structure Simulation and
Verification Using MATLAB

This set of equationsis evaluated for
Increasing values of n startingat n=0

At the beginning, the initial conditions w,[—-1]
and wy,[—-1] can be set to any desired values,
which are typically zero

From the computed impul se response
samples, the structure can be verified by
determining the transfer function
coefficients using the M-filest r ucver
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Simulation of lIR Filters

e TheM-filefi | ter implementsthellR
filter in the transposed direct form ||
structure shown below for a 3rd order filter

x(n)

p) p(3) p(2) p(1)
3(n+l 2(n+1 1(n+1
n s3(n+ )II|= z_l n s2(n+ ): z_l +s (n+ )} 2_1 ¥ _}?I:H)'

—d(4) —d(3) —d(2)

o Asindicated inthefigure, d(1) has been
assumed to be equal to 1
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Simulation of IIR Filters

e Basic forms of thisfunction are
y = filter(num den, x)
[y,sf]=filter(num den, X, si)

where X isthe input vector, y IS the output
vector, si I1sthe vector of initial conditions
of the delay variables, and sf isthe vector
of final values of the delay variables

e For the smulation of acausal IR filter

realized in direct form Il structure use the
M-filedi r ect 2
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Simulation of IIR Filters

For the ssmulation of overlap-add filtering
method usethe M-filef ftfilt orthe
second form of the M-filefi1 | t er

~or the ssmulation of tapped cascaded
attice filter structures, use the M-file

atcfilt
TheM-filesfil ter,direct 2 and
| at cfi1 |t can aso beused to smulate
FIR filters

TheM-filefiltfilt implementsthe
zero-phase filtering

Copyright © 2001, S. K. Mitra



where

Discrete Fourier Transform
Computation

he N-point D
sequence x[n],

-T X[K] of alength-N
0<n< N -1, isdefined by

X[k] =3 o nWK", 0<k<N-1

e Direct Computatlon of all N samples of
{ X[k]} requires N complex multiplications
and N(N —1) complex additions

34
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Goertzel's Algorithm

e A recursive DFT computation scheme that
makes use of the identity

obtained using the periodicity of WgX"
o Using thisidentity we can write

N-1
X[Kl= 3 X/
/=0

N-1 N-1
=W T OO = 3wy
f= {=
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Goertzel's Algorithm
» Define yi[n] = 21 oXe[ (AW ")
* Note: yi[n] isthe direct convolution of the
causal sequence

xe[n]:{x[(;]]’ O0<n<N-1

n<0,Nn>N
with a causal sequence
WK, n>0
0, n<0

* Observe  X[K]= yy[n] _y

36 Copyright © 2001, S. K. Mitra
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Goertzel's Algorithm
e z-transform of yk[n]:Z?:Oxe[f]W,gk(”_g)
yields
Y@ =Zydnl =2 = H (D Xe(2)
-W\ 2
where H,(2) = Z{h[n]} =1/(1-WgKz?1)
and Xg(2) = £{x[N]}
e Thus, Yi[n] isthe output of aninitialy

relaxed LTI digital filter H, (z) with an
input xg[n] and, whenn =N, Y[N]= X[K]
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Goertzel's Algorithm
e Structural interpretation of the algorithm -

x [n] + I » v [n]
x[N]=0 » v [-11=0
Z

—k
Wy

e Thusarecursive DFT computation scheme

> V[Nl = [N + WKy [n—1], 0<n<N

with v, [~1]=0and x[N]=0
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Goertzel's Algorithm

« Since acomplex multiplication can be
Implemented with 4 real multiplications and
2 real additions, computation of each new
value of y,[n] requires 4 rea
multiplications and 4 real additions

* Thus computation of X[k] =y, [N]involves
AN real multiplications and 4N real
additions

) Computtation of all N DFT samples,
requires AN? real mult plications and NG
real additions
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Goertzel's Algorithm

e Recall, direct comgutation of all N samples of
{X[K]} requires N~ complex multiplications
and N(N —1) complex additions

e Equivaently, direct computation of all N
samples of { X[K]} requires 4N real
multiplications and N (4N — 2) real additions

e Thus, Goertzel’ s algorithm requires 2N more
real additions than the direct DFT

computation
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Goertzel's Algorithm

 Algorithm can be made computationally

more efficient by observing that Hy (z) can
be rewritten as

1 1-Wyz 1
Hi(2) = K1 K1 K 1
1-WN "z 1-WN'Z )A-WNZ )
B 1-WSz1
1-2cos(27k/ N)YZ2 + 772
resulting in a second-order realization
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Goertzel's Algorithm

Pk[”]
*(+ Vi lnl
v [-1]= 1=k[—2] =0
N
Vv

 DFT computation equations are now

vie[n] = X[ n] + 2cos(2r k/ N) vy [n—1]
-V [n—-2], 0<n<N

X[K] = Yk[N] = Vi [ N] =Wy [N 1]
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Goertzel's Algorithm

e Computation of each sample of v, [n]
involves only 2 real multiplications and 4
real additions

o Complex multiplication by Wl'\l‘ needs to
be performed only onceat n =N

e Thus, computation of one sample of X[K]
requires (2N +4) real multiplications and
(4N + 4) real additions

e Computation of all N DFT samples requires
2N (N + 2) real multiplications and
AN(N +1) real additions
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Goertzel's Algorithm

e Intheredization of Hy_i(2), the multiplier
In the feedback path is
2cos(27(N —Kk)/ N) =2cos(27k/ N)
which is same as that in the realization of H (2)
‘VN «[N]=w[n],i.e, theintermediate

variables computed to determl ne X[k] can
again be used to determine X[ N —K]

* Only difference between the two structures
Is the feed-forward multiplier which is now
WS, that is the complex conjugate of Wi,

Copyright © 2001, S. K. Mitra



Goertzel's Algorithm

« Thus, computation of X[k] and X[N —Kk]
require 2(N+4) real multiplications and
4(N+2) real additions

e Computation of all N DFT samples require
approximately N“real multiplications and
approximately 2N“real additions

 Number of real multiplications is about one-
fourth and number of real additions Is about
one-half of those needed in direct DFT

computation
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Decimation-in-Time FFT
Algorithm

e Consider a sequence x[n] of length N =2*

» Using a 2-band polyphase decomposition
We can express its z-transform as
X(2) = Xo(Z%) + 2TX4(2%)

where
(N/2)-1 o (N/2)-1 -
Xod)= ¥ xnlz"=" 3 x2nz
n=0 n=0
(N/2)-1 (N/2)—1
X@=" T dnlz"=" T H2n+Yz"

46 n=0
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Decimation-in-Time FFT
Algorithm

e Evaluating on the unit circle at N equally
spaced points z=WgX,0<k<N-1, we
arrive at the N-point DFT of x[n]:

X[K] = Xol (k) 2]+ WK Xl (KO 2],
O<k<N-1
where Xg[K] and X,[k] are the (N/2)-point
DFTs of the (N/2)-length sequences Xg[ N
and [ ]
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Decimation-in-Time FFT
Algorithm

(N/2)-1
e, Xolkl= X xlrIWE,

r=0
(N/2)-1

= Y H{2rIW{f,, 0<k<D-1
r=0
(N/2)-1
Xdkl= Y xlrIWeS,
r=0
(N/2)-1
= ¥ M2r +gWl,, 0<k< D~
r=0
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Decimation-in-Time FFT
Algorithm

e Block-diagram interpretation

XolNl > —point| Xolkrn/o]

X[ N] I "2 OET kX[k]
y4 WN
12 X[n] ';'—point Xq[<{K) N /2]

DFT
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Decimation-in-Time FFT

Algorithm

» Flow-graph representation

¥[0] o—=

2] o—= ‘E—p::nint

\[4] o—w] CFT

¥[6] o=

¥[1] o—w

3] o—wf ¥ _paint

5] eo| DFT

x[7] o—=
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Decimation-in-Time FFT
Algorithm

* Direct computation of the N-point DFT
requiresN? complex multiplications and
N2 —N =~ N2 complex additions

e Computation of the N-point DFT using the
modified scheme requires the computation of
two (N/2)-point DFTs that are then combined
with N complex multiplications and N
complex additions resulting in atotal of
(N2/2)+ N complex multiplications and
approximately (N2/2) + N complex additions

ol Copyright © 2001, S. K. Mitra




Decimation-in-Time FFT

Algorithm
e For N >3, (N%/2)+N < N?

» Continuing the process we can express Xg[K]
and X,[k] asaweighted combination of

two (N/4)-point DFTs
* For example, we can write

X ol KT = X ool (k) /4l + W 12X 02l (K) /4,
0<k<(N/2)-1
where Xqo[ K] and Xqq[k] are the (N/4)-
point DFTs of the (N/4)-length sequences
XoolN] = Xo[2n] and Xo1[N] = X[ 2N +1]
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Decimation-in-Time FFT
Algorithm

o Likewise, we can express

Xa[K] = X10[(K) n7a] + WS 2X12[(K) ],
0<k<(N/2)-1

where Xqo[k] and Xq4[K] are the (N/4)-
point DFTs of the (N/4)-length sequences
XolN] = X[2n] and x;4[N] = %[2n+1]
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Decimation-in-Time FFT
Algorithm

 Block-diagram representation of the two-
stage algorithm

Xol{kK)n /2]

x[n] —r>¢2-‘x%m,¢2 XoolN] le_glc_)int Xool (KN4l - o @ X[K
Z Wiz
4}¢2xL[n]> 'z—point X01[<k>|\|/4] Wl\lf

\ 4 Dl__r 4\
‘Z (] X1 [{K N2l
X.[n X [NIIN _ N
—>¢2‘11—>¢2L[], 4DI_EI(_)Int 10[<{KYnyal - \
A W2
4,¢2L[n]> 'z—point X11[<k>|\|/4]
54 DFT
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Decimation-in-Time FFT
Algorithm

Flow-graph representation

X ool]
e & point — - o X1V
DET | ooll] Wy W

4] g—e -

2] os E_Pmm Xot[9] o ’ r _ > r-; X2

X[ 6] o 4D"T Folll - "; X[3]
& 3 L=

1] o—e e bl LQL*LQL

Jl'lr - ‘- x[il']
= —point S N -

X[3] o 4D|:'—L_ 1ol 1] - l".‘. 'ﬁ' X[5]
3 5
Xul@ N N

x[3] o—e E—Pﬂi_l‘l_t i T & I[EI]
4DL~T X[l N \Eh_,

T[T_l G| - o ¢ I[T_l
W Wi
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Decimation-in-Time FFT
Algorithm

n the flow-graph shown N =8

Hence, the (N/4)-point DFT hereisa2-
point DFT and no further decomposition is
nossible

Thetour 2-point DFTs, X;i[K], i,j =01
can be easily computed

For example
Xoolk] = X0 +W,x(4], k=01
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Decimation-in-Time FFT
Algorithm

» Corresponding flow-graph of the 2-point
DFT is shown below obtained using the
identity Wik =w{N/ 9K

x[O] - XeplD]
><Wﬁ =L
x[4] . X ool1]

| M2
Wo= Wy =-1

o/ Copyright © 2001, S. K. Mitra
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Decimation-in-Time FFT
Algorithm

e Complete flow-graph of the 8-point DFT is

shown below
x[0] o Q _ X[0)
(4] o « ﬂ o' X1
' 4 2 L
7] 6 W * .'“F-' / /?:-'*‘ ]
6 —wi_— 9 XX A
x[6] e w% . W:I! T 3 X[3]
¥[1] o - ~ - “"#’* N
iy
¥[5] o - J = Al
4 g
W W
3 e ! . * > . . X[6]
Wy I
[T ¢ : —%  X[7]
W Wy W,
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Decimation-in-Time FFT
Algorithm

* The flow-graph consists of 3 stages

e First stage computesthe four 2-point DFTSs

» Second stage computes the two 4-point DFTs
o Last stage computes the desired 8-point DFT

e The number of complex multiplications and
additions at each stage is equal to 8, the size
of the DFT
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Decimation-in-Time FFT
Algorithm

Total number of complex multiplications
and additions to compute all 8 DFT samples
Isequal to8+ 8+ 8=24 = 8x3

In the general case when N = 2%, number of
stages for the computation of the (2#)-point
DFT in the fast algorithm will be #=10g, N

Total number of complex multiplications
and additions to compute all N DFT
samplesisN(log, N)
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Decimation-in-Time FFT
Algorithm

 In developing the count, multiplications
with W2 =1 and W'/% = -1 have been
assumed to be complex

o Also the symmetry property of
has not been taken advantage of

* These properties can be exploited to reduce
the computational complexity further
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Decimation-in-Time FFT
Algorithm

* Examination of the flow-graph

x{0] o /°D X[0]

¥[4] ¢ « - <" X
v < !

M1 6 - ~ - m X[4]

x[3] o ;v = .-;‘I X[5]

x[3] e ‘ - o 221; X[6]
w N

x[7] e P C W'E' . - < X7

reveals that each stage of the DET
computation process employs the same

basic computational module
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Decimation-in-Time FFT
Algorithm

 |nthe basic module two output variables are
generated by a welghted combination of
two Input variables as indicated below

wherer =12,...,u and o, =01,...,N-1

Wilod - Wy [01]
Wy

W LR Wi 1LF]
“’15 +(A2)

e Basic computational moduleiscalled a
butter fly computation
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Decimation-in-Time FFT
Algorithm

 |nput-output relations of the basic module

are | o
¥, yla] =¥ [a] + WY, [ B]

W, 4l Bl = P, [a] + W N D [ g]

+ Substituting W,{*(N/2) = ] in the second
equation given above we get

W, 4l Bl = ¥, [a] -WR P, [ A]
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Decimation-in-Time FFT
Algorithm

 Modified butterfly computation requires
only one complex multiplication as
Indicated below

Y, [u]o >< Ppp o]
¥, [fle e IF]

o Use of the above modified butterfly
computation module reduces the total
number of complex multiplications by 50%
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Decimation-in-Time FFT
Algorithm

* New flow-graph using the modified
butterfly computational module for N=8

TS TS N 2
x[4] o O o o X[1]
i X !
x[2] o= - . " V. v —o X[
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o Computational complexity can be reduced
further by avoiding multiplications by W =1,
W|\I|\”2=— | W|\||\”4= i, and WSNM:_J-
 The DFT computation algorithm described

here also is efficient with regard to memory
reguirements

* Note: Each stage employs the same butterfly
computation to compute ¥, ,4[a] and ‘¥, 4] ]
from W, [a] and Y[ S]
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o At the end of computation at any stage,
output variables'¥, . ;[ m] can be stored in the
same registers previously occupied by the
corresponding input variables ‘¥, [m]

e Thistype of memory location sharing Is

called in-place computation resulting in
significant savings in overall memory
reguirements
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* Inthe DFT computation scheme outlined,
the DFT samples X[K] appear at the output
In a sequential order while the input

samples x[n] appear in a different order

x[0] © :\ / X[0]
x[4] o s - - X[
T[EI] A - - Lv-ﬁll - A - ~ ‘.".’. I[E]
T T XK
x[3] e . — " __"_ _v_, - AVA b X[5]
W O IAN
17 e - N TN . ;
x[3] = 1 - X[6]
Wy <~ W ~
¥[7] o j —— X[7)
Wy -1 Wiy -Uwg 1
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e Thus, asequentially ordered input x[n] must
be reordered appropriately before the fast
algorithm described by this structure can be
Implemented

e To understand the input reordering scheme
represent the arguments of Input samples
X[n] and their sequentially ordered new
representations ;[ m| 1n binary forms
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* Therelations between the arguments m and
n are as follows:

m: 000 001 010 011 100 101 110 111
n: 000 100 010 110 OO1 101 O11 111

* Thus, If (bbb, represents the index n of
x[n], then the sample X[b,bby] appears at
the location m=hbybb, as W¥,[bybb, ] before
the DFT computation Is started

* |.e, location of ¥4[m] isin bit-rever sed

order from that of x[n]
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o Alternative forms of the fast DFT
algorithms can be obtained by reordering
the computations such as input in normal
order and output In bit-reversed order, and
both input and output in normal order

* Thefast algorithm described assumes that

the length of X[n] Isapower of 2

 If It1snot, the length can be extended by

zero-padding and make the length a power
of 2
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* Even after zero-padding, the DFT
computation based on the fast algorithm
may be computationally more efficient than
adirect DFT computation of the original
shorter sequence

e Thefast DFT computation schemes
described are called decimation-in-time
(DIT) fast Fourier transform (FFT)
algorithms as input X[ n] isfirst decimated to
form a set of subsequences before the DFT
IS computed
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* For example, the relation between x[n] and
Its even and odd parts, X5[n] and x[n],

generated by the first stage of the DIT
algorithm is given by

qnl: X0l XU X2 X3 X4 X5 X6 X7
%[nl: X0 X2 X4 X6
x[nl: XL X3 X5 X7

74
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o Likewise, the relation between x[n] and the
Sequences X[ NJ , Xog[ NI, %0[N], @nd X[ N},
generated by the two-stage decomposition
of the DIT algorithm is given by

n]: X0l X1 2] N3] 4] A3 A6] X7]
XolN]: X0 (4]
XalN]: X2 X6
Xoln]: X1 X[5
X[n]: N3] X[ 7]
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The subsequences Xy[n], Xy4[N], X0l N], @na
%1IN] can be generated directly by a factor-
of-4 decimation process leading to a single-
stage decomposition as shown on the next
dide
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Xo[<k>N/2]
Xoo[N] E—point Xool(K)ny4l \

X[n] T ol 2 m—— S k X[K]
| W
N/2
5 Xo1 [N N'_ngint | X g [¢K)n/a] k
% 14 42— P 01L(KIN/4 Wy,
Z
V4

DFT

X0l N} N —point | X10[<k)ny4] +\

—— =

DFT

,@Xll[n] E—point X11[{K)Nyal
DFT
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 Radix-R FFT algorithm - A each stage the
decimation is by afactor of R

e Depending on N, various combinations of
decompositions of X[k] can be used to
develop different types of DIT FF
algorithms

e |f the scheme uses a mixture of decimations
by different factors, it is called amixed
radix FFT algorithm
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* For N which Is a composite number
expressible in the form of a product of
Integers.

N = rl.rz...rv
total number of complex multiplications

(additions) inaDIT FFT algorithm based
ona v-stage decomposition is given by

(iri —V)N
1=1
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e Consider a seguence X[ n|
* |tsz-transform can be ex

of length N = 2¥

oressed as

X (2) = Xa(2) + 2 N/2Xp(2)

where
(N/2)-1

Xa(@= 2 An]z™"
n=0

(N/2)-1

Xo(= X AG+nz”
n=0

80

Copyright © 2001, S. K. Mitra



Decimation-in-Frequency
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e Evaluating X(2) on the unit circle at

we get

(N/2)-1 o

X[k]=" 2 Xn]Wy
n=0
(N/2)-1
+W,£|N/2)k 3 x[';| + WK
=0

which can be revvrittgn using the identity
WISIN/Z)k _ (_1)k -

WNiz) 2 K or N nk
X[K] = ;O O]+ (=1)" X, + n])Wy
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e For k even
(N N 2n/
X[20]=" X (4n]+X7 +n)WS
(N/2)-1 n=0 ,
= X (n+x 0 +n)Wyo, 0<e<T-1
n=0
e [For k odd N2
N/2)-1
X[2+0=" % (4l 5+ ) Wy
N=
(N/2)-1 g
= X Oqn =5+ n)WIWT),, 0<e<N -1
n=0
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e \We can write
X[20]=" > vl W)
n=0
X[2¢+1] = (N/zz)_lxl[n] W2, 0<r<N -1
where =

Xo[n]=(><[n]+><[';'+n]),
X[ N] = (x[n]—x[';'+n])w,{,‘, 0O<n< N -1
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e Thus X[2/] and X[2/+1] are the (N/2)-
point DFTs of the length-(N/2) sequences

xoln] and xq[n]
* Flow-graph of the first-stage of the DFT
algorithm is shown below

x[0] \ — o A[0]
x4l

1-[1] /. T,:,[] J::r .

- .TD .

—=0 X[4]

—=0 X[0]

—=0 X[1]

int —=e X[3]

——=a X[3]

—=0 X[7]
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e Herethe input samples are in sequential
order, while the output DFT samples appear
In a decimated form with the even-indexed
sampl es appearing as the output of one
(N/2)-point DFT and the odd-indexed
samples appearing as the output of the other
(N/2)-point DFT
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* \We next express the even- and odd-indexed
samples of each one of the two (N/2)-point
DFTsas asum of two (N/4)-point DFTs

 Processis continued until the smallest DFTs
are 2-point DFTs
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o Complete flow-graph of the decimation-in-
frequency FFT Computation schemefor N=8
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o Computational complexity of the radix-2
DIF FFT agorithm is same as that of the
DIT FFT algorithm

o Variousformsof DIF FFT algorithm can
similarly be developed

« The DIT and DIF FFT algorithms described
here are often referred to as the Cooley-
Tukey FFT algorithms
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Inverse DFT Computation

 An FFT agorithm for computing the DF
samples can also be used to calculate
efficiently the inverse DFT (IDFT)

e Consider alength-N sequence x[n] with an
N-point DFT X[K]

e Recdl
1 N-1

qnl= o X X[KWg"™
k=0
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Inverse DFT Computation

o Multiplying both sides by N and taking the
complex conjugate we get

N-1
NX[n]= 3 X * KWK
k=0

* Right-hand side of above isthe N-point
DFT of asequence X*[K]
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Inverse DFT Computation
e Desired IDFT Xx[n] Isthen obtained as

=

(N-1

k=0

> X * KWK ¢

J

e Inverse DFT computation is shown below:

N-point
DFT

1

91

N

> Re{xn]}
> rm{Xn]}
1
N
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