DC Motor Drives

- Operating Modes
- Four-Quadrant Operation
- Flux-Weakening
- Power-Processor Unit (PPU)
- Electronically-Commutated Motor Drives

Operating Modes

- \downarrow^{ϕ_a} Regenerative Braking: Feeding energy back while braking
 - current and torque direction reversed
 - ◆ same polarity of induced emf
- ☐ Operation in reverse direction: polarity of applied voltage reversed
 - lacktriangle Motoring $i_a < 0$
 - Regenerative braking $i_a > 0$

Four Quadrant Operation

Regenerative Braking in Forward direction

$$e_a = +$$
 $i_a = -$

Motoring in Forward direction

Motoring in Reverse direction

$$e_a = -$$

$$i_a = -$$

Regenerative Braking in Reverse direction

Flux-weakening in wound field machines to Allow Overspeed Operation

- \square Below rated speed, k_T maximum to ensure maximum
 - torque/Ampere thereby minimizing resistive losses
- \square Above rated speed, B_f reduced to keep V_a at its rated value.
- $\square B_f$ reduced by reducing I_f
- \square k_T and k_E changed; $k_T = k_t B_f$; $k_E = k_e B_f$; $k_t = k_e$
- \square Since $I_{\mathcal{A}}$ is limited to its rated value maximum, T_{em} reduces

Power Processing Unit for DC Drives

- ☐ Draw power from utility power quality problems Ideally power flow should be reversible
- ☐ Provide nearly dc voltage and current to the dc motor

Electronically Commutated Motor Drives (Trapezoidal waveform brush-less dc)

- ☐ "Inside out" machines
- ☐ Electronically commutated armature
- ☐ At any instant, only two sets of windings carry currents. As the rotor turns, different pairs of windings are chosen.

Rotating Field & Stationary Conductors

☐ Flux linkage of a single turn coil

$$\lambda_{coil} = (\pi r l) B_f \left(\delta / (\pi / 2) \right)$$

☐ emf induced

total induced emf = $2N_sB_flr\omega_m$

$$(-\pi/2 \le \delta \le \pi/2)$$

$$e_{coil} = \frac{d\lambda}{dt} = \frac{d\lambda}{d\delta} \frac{d\delta}{dt} = \frac{\pi r l B_f \omega_m}{\pi/2} = 2 \underbrace{B_f l r \omega_m}_{e_{cond}}$$

(when all turns are under common pole)

☐ Polarity determined by assuming field to be stationary and and the conductor moving in opposite direction

Induced emf

- ☐ In flat regions all turns are under same pole
- ☐ In sloped regions some turns are under *N* pole while others are under *S* pole

Torque Production

- \square Force on conductors f = Bli torque on rotor CCW
- \square Excite two phases simultaneously Total $T_{em} = 2 \times (2N_sB_f lr)~I = k_T~I$

☐ Equivalent circuit

Phase-to-phase back induced emf

$$e_{back-emf} = 2e_{ph} = 2 \times (2N_s B_f lr)\omega_m = k_E \omega_m$$
 $k_E = k_T$

☐ Hysteresis current control

Position 1: Pole a high, Pole b low Position 2: Pole a low, Pole b high After 60° rotor rotation, a new pair of poles (a,c) are used

Summary

DC Motor Drives

- Operating Modes
- Four-Quadrant Operation
- Flux-Weakening
- Power-Processor Unit (PPU)
- Electronically-Commutated Motor Drives