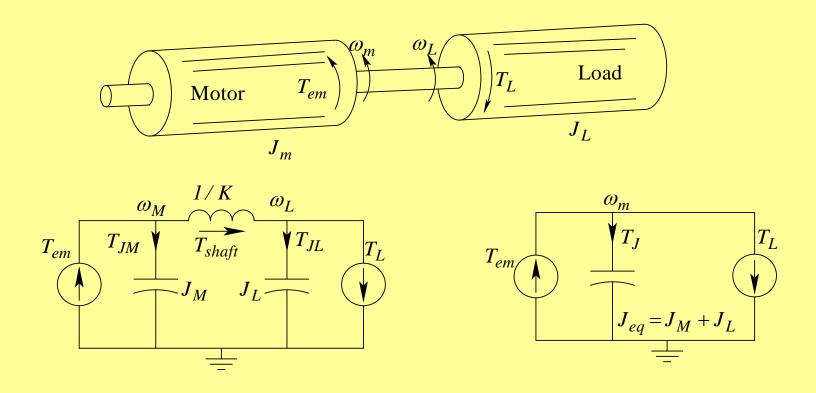
Mechanical System Modeling and Coupling Mechanisms

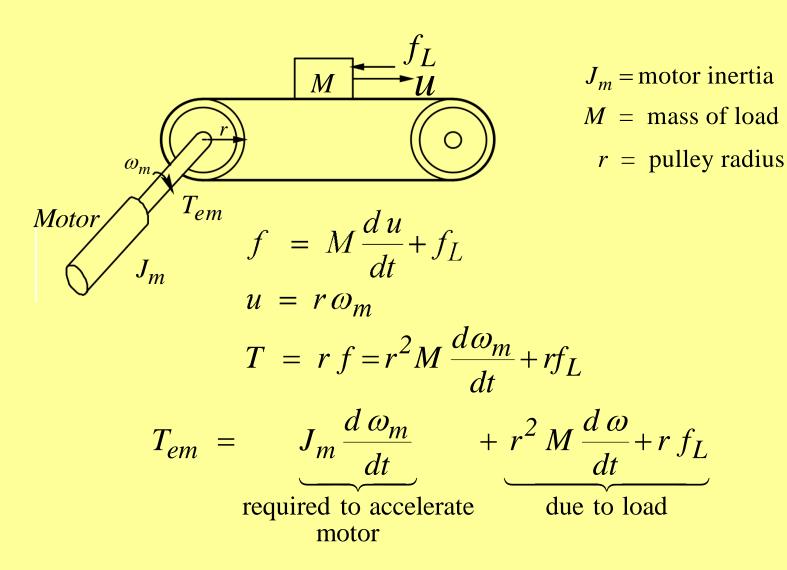

- Mechanical-Electrical Analog
- Electrical Modeling
- Coupling Mechanisms
- Four-Quadrant Operation
- Dynamic Operation

Mechanical - Electrical Analogy

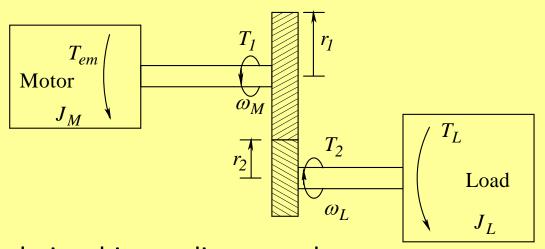
- Torque
- Angular Velocity
- Angular Displacement
- Moment of Inertia
- Spring Constant
- Damping Coefficient
- Coupling Ratio

- Current
- Voltage
- Flux Linkage
- Capacitance
- 1/Inductance
- 1/Resistance
- Transformer ratio

Electrical Analogy of Motor & Load


Finite shaft stiffness

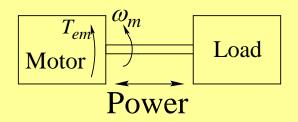
Infinite shaft stiffness

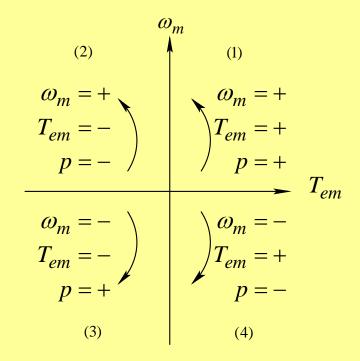

Coupling Mechanisms

- ☐ Required when
 - ◆a (rotary) motor is driving a load which requires linear (translational) motion
 - ◆ motors prefer higher rotational speed than that required by the load
 - ♦ the axis of rotation needs to be changed
- ☐ Types
 - Conveyor belts (belt and pulley)
 - ◆ Rack and pinion or a lead-screw type of arrangement
 - Gear mechanisms

Conversion between Linear and Rotary Systems

Gears


◆ Basic relationships: radius, speed, torque Equal speeds at gear surfaces $\Rightarrow r_1 \omega_M = r_2 \omega_L$ Power transferred across gears $\Rightarrow \omega_M T_1 = \omega_L T_2$,


$$\Rightarrow \frac{r_{l}}{r_{2}} = \frac{\omega_{L}}{\omega_{M}} = \frac{T_{l}}{T_{2}} \qquad \& \underbrace{\left(T_{em} - J_{M} \frac{d \omega_{M}}{dt}\right)}_{T_{l}} \frac{\omega_{M}}{\omega_{L}} = \underbrace{\left(T_{L} + J_{L} \frac{d \omega_{L}}{dt}\right)}_{T_{2}}$$

- Geared up: speed increased, torque decreased $\omega_L > \omega_M$; $T_2 < T_1$; $r_2 < r_1$
- Geared down: speed decreased, torque increased

$$\omega_L < \omega_M; T_2 > T_1; r_2 > r_1$$

Four-Quadrant Operation

Dynamic Operation

- ☐ How the operating point changes with time
- ☐ Important for High Performance Drives
- ☐ Speed change: rapid and without any oscillations
- ☐ Requires good controller design

Summary

Mechanical System Modeling and Coupling Mechanisms

- Mechanical-Electrical Analog
- Electrical Modeling
- Coupling Mechanisms
- Four-Quadrant Operation
- Dynamic Operation