First Course on Power Systems

Module 3: Transmission Lines and Cables

By
Ned Mohan
Professor of ECE
University of Minnesota

Reference Textbook:
First Course on Power Systems by Ned Mohan,
www.mnpere.com

Module 3: Transmission Lines and Cables

Chapte	er 4 AC TRANSMISSION LINES AND UNDERGROUND CABLES	4-1
4-1	NEED FOR TRANSMISSION LINES AND CABLES	4-1
4-2	OVERHEAD AC TRANSMISSION LINES	4-1
4-3	TRANSPOSITION OF TRANSMISSION LINE PHASES	4-3
4-4	TRANSMISSION LINES PARAMETERS	4-4
4-5	DISTRIBUTED-PARAMETER REPRESENTATION OF	4-11
	TRANSMI <mark>SSION LINES</mark>	
4-6	SURGE IMPEDANCE Z_c AND THE SURGE IMPEDANCE	4-13
	LOADING (SIL)	
4-7	LUMPED TRANSMISSION LINE MODELS IN STEADY STATE	4-15
4-8	CABLES	4-18
	REFERENCES	4-19
	PROBLEMS	4-19

Transmission Lines

- Need for Transmission
 Lines
 - Overhead Lines
 - ◆ Cables
 - ♦ HVDC Lines

Overhead AC Transmission Lines

- Distribution Lines
- Transmission Line Voltages
 - ◆ 115 kV, 230 kV, 345 kV, 500 kV and 765 kV
- Three-Phase

Transmission Tower, Conductor and Bundling

Courtesy of Atuminum Company of America

(c)

© Copyrfig. 4-1 500-kV transmission line (Source: University of Minnesota EMTP course).

Towers:

5 towers per mile

Conductors:

ACSR

Shield Wires

Bundling:

- To minimize electric strength at the conductor surface
- Less than 16 kV/cm
- 345 kV Lines
 - 2 conductor-bundle at 18 inches
- 500 kV Lines
 - 3 conductor bundle at 18 inches

cost

- 345 kV Lines
 - ◆ 0.5 M\$ to 2 M\$ per mile

Transposition

- Seldom Transposed
- Barrel Length of 100 miles or less
- Assumed Balanced

Transmission Line Parameters:

- Distributed Parameters
- Analyzed on a per-phase basis

Calculation of Transmission Line Resistance: Skin Effect

- Important to minimize losses
 - 9% lost in transmission and distribution
 - keep resistances small

$$R = \frac{\rho l}{A} \qquad \delta = \sqrt{\frac{2\rho}{(2\pi f)\mu}}$$

Fig. 4-4 (a) Cross-section of ACSR conductors, (b) skin-effect in a solid conductor.

Shunt Conductance G:

- Corona Effect
- Can be represented by G in shunt with Capacitance
- Negligible and therefore neglected