
REDUCTION OF MULTIPLE SYSTEM

In this chapter, you will learn the following: 

�How to reduce a block diagram of multiple subsystems

�How to analyze and design transient response for a system consisting of 

multiple subsystem

�How to represent in state-space a system consisting of multiple

subsystem



Multiple subsystems are represented in two ways : as block diagrams and as signal-flow

graphs. Generally, block diagrams are used for frequency domain analysis, and signal-

flow graphs are used for state-space analysis. We will develop techniques to reduce

each representation to a single transfer function. Block diagram algebra will be used for

block diagram reduction and Mason’s rule will be used to reduce signal-flow graphs. 

BLOCK DIAGRAMS

A subsystem is represented as a block with an input, an output and a transfer function. 

Many systems are composed of multiple subsystems. Whem multiple subsystems are

interconnected, a few more schematic elements must be added to the block diagram. 

These new elements are summing junctions and pickoff points. All component parts

of a block diagram for a linear, time invariant system are shown in the figure. The

characteristic of the summing junction shown in figure(c) is that the output signal C(s), is 

the algebraic sum of the input signals R1(s), R2(s) and R3(s). A pickoff point, as shown in 

figure(d), distributes the input signal, R(s), undiminished, to several output points. 



We will now examine some common topologies for interconnecting subsystems and

derive the single transfer function representation for each of them. 

Cascade Form : The following figure shows an example of cascaded subsystems. 

Intermediate signal values are shown at the output of each subsystems. 

Each signal is derived from the product of the input times the transfer function. The

equivalent transfer function, Ge(s), shown in figure(b), is the output Laplace transform

divided by the input Laplace transform from figure(a),   or Ge(s)=G3(s)G2(s)G1(s) .

Parallel Form : In the parallel form, the equivalent transfer function Ge(s) is the

algebraic sum of the subsystems’ transfer functions.  Ge(s)=G1(s)±G2(s)±G3(s)   



Feedback Form : The feedback system is the basis for our study of control system

engineering. Let us derive the transfer function represents the system.

Figure 5.6Figure 5.6Figure 5.6Figure 5.6
a.a.a.a. Feedback control system;
b.b.b.b. simplified model;
c.c.c.c. equivalent transfer function

The typical feedback system is shown in 

figure(a). A simplified model is shown in 

figure(b). Directing our attention to simplified

model,      E(s) = R(s) ± C(s)H(s)

But since  C(s)=E(s)G(s), substituting E(s) 

in the second equation to the first equation

and solving for transfer function

Ge(s)=C(s)/R(s), we obtain the closed loop

transfer function shown in figure(c), 
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The product G(s)H(s) is called the open loop

transfer function or loop gain. 

So far, we have explored three different

configrations for multiple subsystems. Since 

these three forms are combined into complex

arrangements in physical systems, 

recognizing these topologies is a prerequisite

to obtaining the equivalenttransfer function. 

Now, we will reduce complex systems.



Moving Blocks to Create Familiar Forms : This subsection will discuss basic block

moves that can be made to order to establish familiar forms when they almost exist. In

particular, it will explain how to move blocks left and right past summing junctions and

pickoff points. Following figure shows equivalent block diagrams formed when transfer 

function are moved left or right past a pickoff point. 

Figure 5.7Figure 5.7Figure 5.7Figure 5.7
Block diagram algebra for summing
junctions—equivalent forms for moving 
a block
a.a.a.a. to the left past a summing junction;
b.b.b.b. to the right past a summing junction



Figure 5.8Figure 5.8Figure 5.8Figure 5.8
Block diagram algebra for pickoff points—equivalent forms for 
moving a block
a.a.a.a. to the left past a pickoff point;
b.b.b.b. to the right past a pickoff point



Example : Reduce the block diagram shown in figure to a single transfer function.

Solution : First, the

three summing junction

can be collapsed into a 

single summing

junction as shown in 

(a). Second, recognize

that three feedback

functions, H1(s), H2(s), 

and H3(s) are connected into parallel. The equivalent function is H1(s)-H2(s)+H3(s). 

Also recognize thatG2(s) and G3(s) are connected in cascade. Thus, the equivalent

transfer function is the product G3(s)G2(s) as shown in (b). Finally, the feedback

system is reduced and multiplied by G1(s) to yield the equivalent transfer function

shown in (c).



Analysis and Design of Feedback Control Systems

In this subsection we will evaluate the expressions for percent overshoot, settling time, 

peak time and rise time. Consider the system shown in the figure, which can model a 

control system such as the antenna azimuth position control system. For example, the

transfer function, K/s(s+a), can model the

amplifiers, motor, load and gears. The closed

loop transfer function T(s) for this system is
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where K models the amplifier gain. As K varies, the poles move through the three

ranges of operation of a second order system: overdamped, critically damped and

underdamped. For example, for K between 0 and a2/4, the poles of the system are real

and are located at
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As K increases, the poles move along the real axes, and the system remains

overdamped until K=a2/4. At that gain, or amplification, both poes are real and equal, 

and the system is critically damped. For gains above a2/4, the system is underdamped, 

with complex poles located at
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Now as K increases, the real part remains constant and the imaginary part increases. 

Thus the peak time decreasesand the percent overshoot increases, while the settling

time remains constant. Let us look at two examples.



Example : For the system shown in figure, find the peak time, settling time and %PO.

Solution : The closed loop transfer function is
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Example : Design the value of gain, K, for the feedback control system of figure so that

the system will respond with a 10% overshoot.

Solution : The closed loop transfer of the system is 
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Since the percent overshoot is a function only of ζ, we say that the percent overshoot is 

a function of K in this example. A 10% overshoot implies that ζ=0.591. Substituting this

value for the damping ratio into the last equation, and solving for K yields K=17.9



SIGNAL-FLOW GRAPHS

Signal-flow graphs are an alternative to block diagrams. Unlike block diagrams, which

consist of blocks, signals, summing junctions, and pickoff points, a signal-flow graph

consist only of branches, which represent system, and nodes, which represent signals. 

These elements are shown in figure (a) and (b) respectively.

A system is shown represented by a line with an arrow

showing the direction of signal-flow through the system. 

Adjacent to the line we write the transfer function. A signal is 

a node with the signal’s name written adjacent to the node.

Figure(c) shows the interconnection of the systems and the signals. Each signal is the

sum of signals flowing into it. For example, the signal V(s),
V(s) = R1(s)G1(s) - R2(s)G2(s) + R3(s)G3(s)

For C2(s),

C2(s) = V(s)G5(s)

= R1(s)G1(s)G5(s) – R2(s)G2(s)G5(s) 

+ R3(s)G3(s)G5(s)

C3(s) = - V(s)G6(s) 

= - R1(s)G1(s)G6(s) + R2(s)G2(s)G6(s) 

- R3(s)G3(s)G6(s)



To show parallelity between block diagrams and signal-flow graphs, we will take some of 

the block diagram forms from the previous section and convert them to signal-flow

graphs in the following example. In each case we will first convert the signals to

nodesand then interconnect the nodes with system branches.

Example : Convert the cascaded, parallel and feedback forms of the block diagrams

shown in figure into signal-flow graphs. 

a)

Solution : Begin by drawing the signal nodes. Next interconnect the signal nodes with

system branches.



b)



c)



Example : Convert the block diagram shown in the figure to a signal flow diagram

Solution : Begin by drawing the

nodes as figure(a). Next

interconnect the nodes as figure(b). 

Notice that the negative signs at the

summing junction of the block

diagram are represented by the

negative transfer function of  the

signal flow diagram. Finally, if

desired, simplify the signal-flow

graph to the one shown in figure(c) 

by eliminating signals that have a 

single flow in and a flow out, such as 

V2(s), V7(s) and V8(s). 



MASON’S RULE

Earlier in this lecture, we discussed how to reduce block diagrams to single transfer 

functions. Now we are ready to discuss a technique for reducing signal-flow graphs to

single transfer functions that relate output of a system to its input. 

Some Definitions Related Mason’s Formulation : 

Loop Gain : The product of branch gains found by traversing a path that starts at a 

node and ends at the same node, following the direction of the signal flow, without

passing through any other node more than once. For examples of loop gains, see

following figure.

There are four loop gains : 

1. G2(s)H1(s)      2. G4(s)H2(s)     3. G4(s)G5(s)H3(s)       4. G4(s)G6(s)H3(s)



Forward Path Gain : The product of gains found by traversing a path from the input

node to the output node of signal-flow graph in the direction of signal flow. Exapmles of 

forward-path gains are also shown the same figure.

There are two forward-path gains : 

1.G1(s)G2(s)G3(s)G4(s)G5(s)G7(s)        2. G1(s)G2(s)G3(s)G4(s)G6(s)G7(s)

Non-touching Loop Gain : The product of loop gains from nontouching loops taken

two,three, four, or more at a time. In the above figure, the product of loop gain

G2(s)H1(s)and loop gain G4(s)H2(s) is a nontouching-loop gain taken two at a time. In

summary all three of nontouching loop gains taken two at a time are

1.[G2(s)H1(s)][G4(s)H2(s)]          2. [G2(s)H1(s)][G4(s)G5(s)H3(s)]                                          

3. [G2(s)H1(s)][G4(s)G5(s)H3(s)] 

In this example there are no nontouching loop gains taken three at a time since three

nontouching loop do not exist in the example.



After this definitions, we are ready to state Mason’s rule. 

MASON’S RULE

The transfer function, C(s)/R(s), of a system represented by a signal-flow graph is 
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where

k = number of forward paths

Tk = the kth forward-path gain

∆ = 1 - Σ(loops gains) + Σ(nontouching-loop gains taken two at a time)

- Σ(nontouching-loop gains taken three at a time)

+ Σ(nontouching-loop gains taken four at a time)

- ……………………..

∆k = ∆ – Σ(loop gain terms in ∆ that touch the kth forward path)

In other words, ∆k is formed by eliminating from ∆ those loop gains that touch the kth

forward path. 



Example : Find the transfer function, C(s)/R(s), for the signal flow graph in figure.

First, identify the forward-path gains. In this example there is only one :

G1(s)G2(s)G3(s)G4(s)G5(s)

Second, identify the loop gains. There are four, as follows :  

1.G2(s)H1(s)  2. G4(s)H2(s)   3.G7(s)H4(s)   4. G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)

Third, identify the nontouching loops taken two at a time. We can see that loop 1 does

not touch loop 2, loop1 does not touch loop3, ans loop 2 does not touch loop3. Note that

loop 1, 2 and 3 all touch loop 4. Thus, the combinations of nontouching loops taken two

at a time are as follows:       Loop 1 and loop 2 : G2(s)H1(s)G4(s)H2(s)

Loop 1 and loop 3 : G2(s)H1(s)G7(s)H7(s)

Loop 2 and loop 3 : G4(s)H2(s)G7(s)H4(s)



Now, we can form ∆ and ∆k.

∆=1–[G2(s)H1(s) + G4(s)H2(s) + G7(s)H4(s) + G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)]

+[G2(s)H1(s)G4(s)H2(s) + G2(s)H1(s)G7(s)H7(s) + G4(s)H2(s)G7(s)H4(s)]

-[G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)]

We form ∆k by eliminaitng from ∆ the loop gains that touch the kth forward path :

∆1 = 1 – G7(s)H4(s) 

Finally, the nontouching loops taken

three at a time are as follows : 

Loops 1,2 and 3 : G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)
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The transfer function is

Since there is only one forward path, G(s) consists of only one term, rather than a sum

of terms, each coming from a path.



Signal-Flow Graphs of State Equations : 

In this section we draw signal-flow graphs from state-equations. At first this process will

help us visualize state variables. Later we will draw signal flow graphs and then write

alternate representation of a system in state space.

Consider the following state and output equations :  
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First, identify three nodes to be the three state variables. Also identify three nodes to be 

the derivative of state variables as in figure(a).

Next interconnect the state variables and their derivatives with the defining integration, 

1/s, as shown in figure(b).



Then feed to each node the indicated signals. 
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For example, the derivative of x1 receives 2x1, -5x2, 3x3 and 2r. The connections for the

derivative of x1 are as follows:

If we draw the connections for the other nodes, the resulting signal flow graph will be as 

follows:



SIMILARITY TRANSFORMATIONS
Earlier we saw that systems can be represented with different state variables even

though the transfer function relating the output to the input remains the same. The

various forms of the state equations were found by manipulating the transfer function, 

drawing a signal flow graph, and then writing the state equation from the signal flow

graph. These systems are called similar systems. Although the state-space

representation are different, similar systems have the same transfer function and hence

the same poles and eigenvalues. 

We can make transformations between similar systems from one set of state equations

to another without using the transfer function and signal flow graphs. A system

represented in state-space as
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P is a transformation matrix whose columns are the coordinates of the basis vectors of 

z1z2 space expressed as linear combinations of the x1x2. Let us look an example.



Example : Given the system represented in state space by the following equations
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transform the system to a new state variables, z, where the new state variables are

related to the original state variables, x, as follows
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Solution : Because of  z = P-1x , note that the elements of P-1 are

Anymore we can calculate all other matrices :
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Therefore, the transformed system is
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Diagonalizing a System Matrix : A diagonal system matrix has the advantage that

each state equation is a function of only one state variable. Hence, each differential

equation can be solved independently of other equations. We say that the equation are

decoupled. We can decouple a system using matrix transformations. If we find the

correct P matrix, the transformed system matrix P-1AP will be a diagonal matrix. Thus, 

we are looking for a transformation matrix to another state-space that yields a diagonal

matrix in that space. This new state space also has basis vectors that lie along its state

variables. We give a special name to any vectors that are collinear with the basis vectors

of the new system that yields a diagonal system matrix: they are called eigenvectors.

First, let’s define eigenvectors and then we will show how to diagonalize a matrix. 

Eigenvector : The eigenvectors of the matrix A are all vectors, xi ≠ 0, which under the

transformation A become multiples of themselves; that is,

Axi = λixi

where λi’s are constants. The figure below shows this definition of eigenvectors. If A is 

not collinear with x after transformation, as in figure(a), x is not an eigenvector. If Ax is
collinear with x after the

transformation, as in figure(b), x is 

an eigenvector. 



Eigenvalue : The eigenvalues of the matrix A are the values of λi that satisfy the

following equation for xi=0,

Axi = λixi

To find the eigenvectors, we rearrange tihs equation. Eigenvectors, xi, satisfy

0=(λiI-A)xi

Solving for xi by premultiplying both sides by (λiI-A)-1 yields

Since xi≠0, a nonzero solution exists if det(λiI-A)=0 from which λi can be found.

Now we are ready to show how to find the eigenvectors xi. First we find eigenvalues, λi, 

using det(λiI-A)=0, and then we use the equation Axi = λixi to find the eigenvectors. 
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Example : Find the eigenvectors of the matrix

Solution : First use det(λiI-A)=0 to find the eigenvalues, λi :
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For eigenvectors, we must use the equation Axi = λixi for -2 and -4. For -2, we have:
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One choice of the eigenvectors is 
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We now show that if the eigenvectors of the matrix A are chosen as the basis vectors of 

a transformation, P, the resulting system matrix will be diagonal. Let the transformation

matrix P consist of the eigenvectors of A, xi.      P=[x1,x2,x3,…….,xn]

Since xi are eigenvectors, Axi=λxi, which can be written equivalently as a set of 

equations expressed by

AP =PD

Where D is a diagonal matrix consisting of λi’s are eigenvalues, along the diagonal, and

P=[x1,x2,x3,…….,xn]. Solving the equation AP = PD for D by premultiplying by P-1, we get

D = P-1AP

which is the system matrix of transformed similar system.

In summary, under the transformation P, consisting of eigenvectors of the system matrix, 

the transformed system is diagonal, with the eigenvalues of the system along the

diagonal. The transformed system is identical to that obtained using partial-fraction

expansion of the transfer function with dinstict real roots. 

In the following example, we we will find eigenvectors of a second order system. Let us 

continue with this problem amd diagonalize system matrix.



Example : Given the the system by the following equations, find the diagonal system that

is similar.
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Solution : First find eigenvalues and eigenvectors. This step is performed in the previous

example (Note that the matrix A is same). Next form the transformation matrix P, whose

columns consist of eigenvectors.
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Finally, form the similar system’s matrix, input matrix and output matrix respectively,
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Note that the diagonal elements of the system matrix are eigenvalues of transformation

matrix, P.


