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Noise: An Introduction

Adapted from a presentation in:
Transmission Systems for Communications,

Bell Telephone Laboratories, 1970, Chapter 7
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Noise: An Introduction
• What is noise?
• Waveforms with incomplete information

– Analysis: how?
– What can we determine?

• Example: sine waves of unknown phase
– Energy Spectral Density
– Probability distribution function: P(v)
– Probability density function: p(v)
– Averages

• Common probability density functions
– Gaussian
– Exponential

• Noise in the real-world
• Noise Measurement
• Energy and Power Spectral densities
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Background Material
• Probability

– Discrete
– Continuous

• The Frequency Domain
– Fourier Series
– Fourier Transform
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Noise
• Definition

Any undesired signal that interferes with the 
reproduction of a desired signal

• Categories
– Deterministic: predictable, often periodic, noise

often generated by machines
– Random: unpredictable noise, generated by a

“stochastic” process in nature or by machines
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Random Noise

• Unpredictable
– “Distribution” of values 
– Frequency spectrum: distribution of energy 

(as a function of frequency)
• We cannot know the details of the 

waveform only its “average” behavior
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Noise analysis Introduction:
a sine wave of unknown phase

• Single-frequency interference
n(t) = A sin(ωnt + φ) 
A and ωn are known, but φ is not known

• We cannot know its value at time “t”
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Energy Spectral Density
Here the “Energy Spectral Density” is just the magnitude 
squared of the Fourier transform of n(t)

since all of the energy is concentrated at ωn and each half 
of the energy is at ± ω since the Fourier transform is based 
on the complex exponential not sine and cosine.
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Probability Distribution
• The “distribution” of the ‘noise” values

– Consider the probability that at any time t the voltage is less than 
or equal to a particular value “v”

• The probabilities at some values are easy
– P(-A) = 0
– P(A) = 1
– P(0) = ½

• The actual equation is: P(vn) = ½ + (1/π)arcsin(vn/A)
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Probability Distribution
continued

• The actual equation is: P(vn) = ½ + (1/π)arcsin(v/A)

• Note that the noise spends more time near the extremes and less time 
near zero.  Think of a pendulum:

– It stops at the extremes and is moving slowly near them
– It move fastest at the bottom and therefore spends less time there.

• Another useful function is the derivative of P(vn): the 
“Probability Density Function”, p(vn)   (note the lower case p)

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5

Shown for A=1



11/24/2002 Noise: An Introduction 10

Probability Density Function
• The area under a portion 

of this curve is the 
probability that the 
voltage lies in that region.

• This PDF is zero for
|vn| > A
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Averages
• Time Average of signals

• “Ensemble” Average
– Assemble a large number of examples of the noise signal. 

(the set of all examples is the “ensemble”)
– At any particular time (t0) average the set of values of  vn(t0)

to get the “Expected Value” of vn

• When the time and ensemble averages give the same value 
(they usually do), the noise process is said to be “Ergodic”
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Averages (2)

• Now calculate the ensemble average of our 
sinusoidal “noise”

• Which is obviously zero 
(odd symmetry, balance point, etc.
as it should since this noise the has no DC component.)
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Averages (3)
• E[vn] is also known as the “First Moment” of p(vn) 

• We can also calculate other important moments of p(vn).  
The “Second Central Moment” or “Variance” (σ2) is:

Which for our sinusoidal noise is:
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Averages (4)
Integrating this requires “Integration by parts
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Averages (5)
Continuing

Which corresponds to the power of our sine wave noise
Note: σ (without the “squared”) is called the “Standard Deviation” of 

the noise and corresponds to the RMS value of the noise
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Common Probability Density Functions:
The Gaussian Distribution

• Central Limit Theorem
The probability density function for a random variable that is the result 
of adding the effects of many small contributors tends to be Gaussian 
as the number of contributors gets large.
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Common Probability Density Functions:
The Exponential Distribution

• Occurs naturally in discrete “Poison Processes”
– Time between occurrences 

• Telephone calls
• Packets
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Common Noise Signals

• Thermal Noise
• Shot Noise
• 1/f Noise
• Impulse Noise
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Thermal Noise
• From the Brownian motion of electrons in a 

resistive material.
pn(f) = kT is the power spectrum where:

k = 1.3805 * 10-23 (Boltzmann’s constant) and
T is the absolute temperature (°Kelvin)

• This is a “white” noise (“flat” spectrum)
– From a color analogy
– White light has all colors at equal energy

• The probability distribution is Gaussian
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Thermal Noise (2)
• A more accurate model (Quantum Theory)

Which corrects for the high frequency roll off
(above 4000 GHz at room temperature)

• The power in the noise is simply
Pn = k*T*BW Watts  or
Pn = -174 + 10*log10(BW) in dBm 

(decibels relative to a milliwatt)
Note: dB = 10*log10 (P/Pref ) = 20*log10 (V/Vref ) 
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Shot Noise
• From the irregular flow of electrons

Irms = 2*q*I*f  where: 
q = 1.6 * 10-19 the charge on an electron

• This noise is proportional to the signal level
(not temperature)

• It is also white (flat spectrum) and Gaussian
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1/f Noise
• Generated by:

– irregularities in semiconductor doping
– contact noise
– Models many naturally occurring signals

• “speech”
• Textured silhouettes (Mountains, clouds, 

rocky walls, forests, etc.)

• pn(f) =A / f α (0.8 < α < 1.5)
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Impulse Noise
• Random energy spikes, clicks and pops

– Common sources
• Lightning
• Vehicle ignition systems

– This is a white noise, but NOT Gaussian
• Adding multiple sources - more impulse noise
• An exception to the “Central Limit Theorem”
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Noise Measurement

• The Human Ear
– Average Performance
– The Cochlea
– Hearing Loss

• Noise Level
– A-Weighted
– C-Weighted
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Hearing Performance
(an average, good, ear)

• Frequency 
response is a 
function of 
sound level 

• 0 dB here is 
the threshold 
of hearing

• Higher 
intensities 
yield flatter 
response
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The Cochlea
• A fluid-filled spiral 

vibration sensor
– Spatial filter:

• Low frequencies travel the 
full length

• High frequencies only 
affect the near end

– Cillia: hairs put out signals 
when moved

• Hearing damage occurs 
when these are injured

• Those at the near end are 
easily damaged (high 
frequency hearing loss)
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Noise Intensity Levels:
The A- Weighted Filter

• Corresponds to the sensitivity of the ear at the threshold of 
hearing; used to specify OSHA safety levels (dBA)
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An A-Weighting Filter

• Below is an active filter that will accurately 
perform A-Weighting for sound measurements
Thanks to: Rod Elliott at http://sound.westhost.com/project17.htm
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Noise Intensity Levels:
The C- Weighted Filter

• Corresponds to the sensitivity of the ear at normal listening 
levels; used to specify noise in telephone systems (dBC)
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Energy Spectral Density (ESD)
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Energy Spectral Density (ESD)
and Linear Systems

Therefore the ESD of the output of a linear system 
is obtained by multiplying the ESD of the input by 

|H(ωωωω)|2

X(ω) Y(ω) = X(ω) H(ω) 
H(ω)
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Power Spectral Density (PSD)
• Functions that exist for all time have an 

infinite energy so we define power as:
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Power Spectral Density (PSD-2)
• As before, the function in the integral is a density.  This 

time it’s the PSD

• Both the ESD and PSD functions are real and even 
functions
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