Noise: An Introduction

Adapted from a presentation in:
Transmission Systems for Communications,
Bell Telephone Laboratories, 1970, Chapter 7
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Noise: An Introduction

What is noise?

Waveforms with incomplete information
—  Analysis: how?
—  What can we determine?

Example: sine waves of unknown phase
— Energy Spectral Density
- Probability distribution function: P(v)
— Probability density function: p(v)
— Averages

Common probability density functions
— Gaussian
— Exponential

Noise in the real-world

Noise Measurement

Energy and Power Spectral densities
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Background Material

* Probability
— Discrete
— Continuous
e The Frequency Domain
— Fourier Series
— Fourier Transform
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Noise

e Definition

Any undesired signal that interferes with the
reproduction of a desired signal

o Categories

— Deterministic: predictable, often periodic, noise
often generated by machines

— Random: unpredictable noise, generated by a
“stochastic” process In nature or by machines
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Random Noise

 Unpredictable
— “Distribution” of values

— Frequency spectrum: distribution of energy
(as a function of frequency)

* \We cannot know the details of the
waveform only its “average” behavior
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Noise analysis Introduction:
a sine wave of unknown phase

 Single-frequency interference

n(t) = Asin(w.t + @
A and w, are known, but @is not known

 \We cannot know Its value at time “t”
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Energy Spectral Density

Here the “Energy Spectral Density” is just the magnitude
squared of the Fourier transform of n(t)

N @) =2 [o(w-w,)+ oo+ )

since all of the energy Is concentrated at w, and each half
of the energy is at £ w since the Fourier transform is based
on the complex exponential not sine and cosine.
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Probability Distribution

» The “distribution” of the ‘noise” values
— Consider the probability that at any time t the voltage is less than
or equal to a particular value “v” p(y )= p[n(t) < v]
e The probabilities at some values are easy
- P(-A)=0
—- P(A) =1
- P(0) =%
» The actual equation is: P(v,) = % + (1/marcsin(v,/A)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0.8 -

Shown for A=1
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Probability Distribution

continued

e The actual equation is: P(v,) = %2 + (1/marcsin(v/A)

-1.5 1 -0.5 0 0.5 1 1.5

Shown for A=1

* Note that the noise spends more time near the extremes and less time
near zero. Think of a pendulum:

— It stops at the extremes and is moving slowly near them
— It move fastest at the bottom and therefore spends less time there.

» Another useful function is the derivative of P(v,): the
“Probability Density Function”, p(v,) (note the lower case p)
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Probability Density Function

e The area under a portion d
of this curve is the p(v,) = d_[P(Vn )]
probability that the v
voltage lies in that region. 3 1

* This PDF is zero for pvy) = \/Az — 2
V.| > A A =V
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Averages

* Time Average of signals
- 1 T
n== f; n(t it
“Ensemble” Average

— Assemble a large number of examples of the noise signal.
(the set of all examples is the “ensemble”)

— At any particular time (t,) average the set of values of v, (t,)

- K
v = E() :%Zvl or E(v,) = [ p(v)av for the infinite set
=1

to get the “Expected Value” of v,

* When the time and ensemble averages give the same value
(they usually do), the noise process is said to be “Ergodic”
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Averages (2)

* Now calculate the ensemble average of our
sinusoidal “noise”

E(v.) = fwv* o(v)dv

E(v,) = [; ﬂ(AZ \_/Vz)o.s av

* Which iIs obviously zero

(odd symmetry, balance point, etc.
as It should since this noise the has no DC component.)
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Averages (3)
e E[v,] is also known as the “First Moment” of p(v,)

E(v.)= fwv* o(V)dv

* We can also calculate other important moments of p(v,).
The “Second Central Moment” or “Variance” (o?) is:

o’ = E[(v—v_n)zl = fw (v—ﬁ)z* p(v)dv

Which for our sinusoidal noise is:

2 v’
O = .Eo ﬂ(AZ _V2)0-5 av
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Averages (4)

Integrating this requires “Integration by parts

ju *dV =U *V - deU

2 v’
o° = fw n(A2 _V2)0-5 dv

-
ra* -v?)

Then dU =dv and V = —E(A2 —vz)o'5 and

let U=v and dV =

71
0 A
0% = —7% (A2 vz)o'5 3 + fAz_lr (A2 —v2)0'5dv
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Averages (5)

Continuing o2 = fAi(Az —V2)0'5dv

Which corresponds to the power of our sine wave noise

Note: o (without the “squared”) is called the “Standard Deviation” of
the noise and corresponds to the RMS value of the noise
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Common Probability Density Functions:
The Gaussian Distribution

{(V—\_/)Z/ZJZ}

Gaussian Disrtibution
o0 =05, Mean =05

e Central Limit Theorem

The probability density function for a random variable that is the result
of adding the effects of many small contributors tends to be Gaussian
as the number of contributors gets large.
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Common Probability Density Functions:

The Exponential Distribution

p(v)=A*&" forv=0,0forv<0

Exponential Disrtibution

e Occurs naturally in discrete “Poison Processes”

— Time between occurrences
o Telephone calls
e Packets
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Common Noise Signals

e Thermal Noise
e Shot Noise

e 1/f Noise

* Impulse Noise
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Thermal Noise

e From the Brownian motion of electrons in a
resistive material.

p,(f) = KT is the power spectrum where:
k =1.3805 * 10-2% (Boltzmann’s constant) and
T Is the absolute temperature (°Kelvin)

e This s a “white” noise (“flat” spectrum)
— From a color analogy
— White light has all colors at equal energy

* The probability distribution is Gaussian
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Thermal Noise (2)

* A more accurate model (Quantum Theory)

o ()= hljf* f
5( ) -1

Which corrects for the high frequency roll off
(above 4000 GHz at room temperature)
e The power In the noise Is simply
P, =k*T*BW Watts or

P,=-174 + 10*log,,(BW) in dBm
(decibels relative to a milliwatt)

Note: dB - 10*|0910 (P/Pref) = 20*'0910 (V/Vref)
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Shot Noise

e From the irregular flow of electrons
| e = 2%q*1*f where:
q = 1.6 * 10-1° the charge on an electron

* This noise Is proportional to the signal level
(not temperature)

o |t s also white (flat spectrum) and Gaussian
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1/f Noise

» Generated hy:
— Irregularities in semiconductor doping
— contact noise

— Models many naturally occurring signals
e “speech”

» Textured silhouettes (Mountains, clouds,
rocky walls, forests, etc.)

e p,(f)=A/1% (0.8 <a<1.5)
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Impulse Noise

e Random energy spikes, clicks and pops
— Common sources
e Lightning
 Vehicle ignition systems
— This Is a white noise, but NOT Gaussian

« Adding multiple sources - more impulse noise
« An exception to the “Central Limit Theorem”
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Noise Measurement

e The Human Ear
— Average Performance
— The Cochlea
— Hearing Loss
* Noise Level
— A-Weighted
— C-Weighted
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Hearing Performance

(an average, good, ear)

» Frequency B BE; e _J:.;/
response is a pE— itk “_*‘::i -
function of m T :f-u_‘___ : i-zé'
sound level - ~~~{_7H1

» OdBhereis 2 L33 — n | /f;.i/”
the threshold 2 «—F< =T A,

- - | Sl __{'I
of hearing s =i & | T Tla

e Higher 2L m =1 /:;,L
intensities = P jjﬂi
yield flatter | i N 7T
response | | m"‘“‘- Il

Frequency in Hz
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The Cochlea

e A fluid-filled spiral
vibration sensor

— Spatial filter:
« Low frequencies travel the
full length

« High frequencies only
affect the near end

— Cillia: hairs put out signals
when moved

» Hearing damage occurs
when these are injured Alsc H. Salt, Washington Uriversity

» Those at the near end are
easily damaged (high
frequency hearing loss)
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Noise Intensity Levels:
The A- Weighted Filter

+1{1 ”

HITNG

f i
8

10 B0 100 200 500 ik = Bk Tk 20k B
Hz

o Corresponds to the sensitivity of the ear at the threshold of
hearing; used to specify OSHA safety levels (dBA)
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An A-Weighting Filter

« Below is an active filter that will accurately

perform A-Weighting for sound measurements
Thanks to: Rod Elliott at http://sound.westhost.com/project17.htm

TR
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Noise Intensity Levels:
The C- Weighted Filter

=0 m’

1w 20 50 ol E L S0 1k =% = T 2k S0k
Hz

« Corresponds to the sensitivity of the ear at normal listening
levels; used to specify noise in telephone systems (dBC)
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Energy Spectral Density (ESD)

E= E_ fz(t)dt Is the Energy in a time waveform,

but f(t)= 1 _[j:_w F(w)e “'dw is the Inverse Fourier Transform

21T

E= E_w f(t)[%r [ F(a))g“'“"da)}dt Substituting for one f (t)

_ 1 - jaot } : : -
= _[1_00 F(cu)L ﬁ __f(t)e“dt |[dew Interchanging the order of integration

but the inner integral is almost the Fourier Transform (except for the "-" jat)
1

E=_—| F (w)F (- w)dw but F(-w)=F"(w) the complex conjugate
E = %T ::_JF(w)\Zda) so|F(w)” is the "Energy Spectral Density"
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Energy Spectral Density (ESD)
and Linear Systems

X(w) H(w) Y(w) = X(w) H(w)

Y (w)’ df changing to f eliminates thei
=00 27T

H (w)* X () df soif H(w)and X (w)are uncorrelated

[
=3

<
3 I_II" 3
8

H () *|X ()" df

<
—

o] =—00

Therefore the ESD of the output of a linear system
IS obtained by multiplying the ESD of the input by
H(w)/?
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Power Spectral Density (PSD)

e Functions that exist for all time have an
Infinite energy so we define power as:

lim
p = 1

Define f.(t)= f(t) for —% <t <%and zero elsewhere

f 2(t)dt} this is energy/time

|\)|_|N —

)
E, = f IF; (w)df which does exist and the Power is

- ,
P = im {EET}:[’O hm [‘FT(C‘))‘ ] df
t > oo T ©lf - 00 T
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Power Spectral Density (PSD-2)

» As before, the function in the integral Is a density. This
time it’s the PSD

hep < i (\FT (a))\ZJ

{ - T

e Both the ESD and PSD functions are real and even
functions
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