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EEL 5544 Noise in Linear Systems Lecture 14

JOINT PROBABILITY MASS FUNCTIONS

DEFN| If X and Y are discrete random variables, the joint probability mass function
for X and Y is

Pxy(xz,y) = P(X =z,Y =vy).

Example: Flipping 2 coins (continued)
For the previous example of flipping two coins, we previously found all the values of the joint
pmf, which is given by

174, (z,y) €{(0,1),(1,0);
PX,Y = 1/27 (ZE,y) - (171)
0, otherwise

STATISTICAL INDEPENDENCE

Recall that if A, B € F, then A and B are s.i. iff
P(ANB) = P(A)P(B).

e How should we generalize this concept to random variables?
e Would at least like
P(a1<X§a2,bl<Y§b2):P(a1<X§a2)P(bl<Y§b2) (D)

for all a1 < as, b; < by

Writing (1) in terms of the dist. fcns yields

Fxy(az,by) — Fxy(a1,by) — Fxy(az,b1) + Fxy(aq,b1)
= [Fx(az2) — Fx(a1)] [Fy (b2) — Fy (b1)]
:Fx(CLg)Fy(bg) — Fx(al)Fy(bg> — Fx(ag)Fy(bl) —+ Fx(al)Fy<b1) (2)

Comparing the LHS and RHS of (2), a sufficient condition is

DEFN| Random variables X and Y are s.i. iff
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e What does this imply about the density functions?

82
fXY(xa y) = axayFXY(x: Z/)

= {%FX(@} {%Fy(y)}
= fx(2)fr(y)

Examples: Are X and Y s.i. in the previous two examples?

CONDITIONING WITH MULTIPLE RVS

e Consider our previous definition of conditional probability.
e Given events A, B, with P(B) > 0, then

P(ANB)

P(AIB) = ~ 5

e To extend our concepts of conditional prob. to multiple RVS, consider the events
A = {X <z}
B = {Ye(C},
where P(B) # 0.

e Then

P(X <zY e()
P(Y € C)

P(AB)=P(X <zlY e(C) =
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e We will write this as a conditional distribution function

P(X <zYe(l)
PyecC)

Fx(z|Y € C) =
which also admits a conditional density function

SPECIAL CASES OF COND. DISTS AND DENSITIES

1. Point conditioning (generally most useful case)
First, suppose P(Y = y) > 0.Then

Fxy(zly) = Fx(2]Y = y) = =

In particular, if Y is a discrete RV and we condition on Y = y, then

P(X <z,Y = y)

Fxpy (zlyp) = Pr ()
If both X and Y are discrete RVs, then
Pxy(xj,yk)
Pxy (z|yx) = Ty]k)

If X and Y are s.i., then

Pxy (5]yr) =

as expected.

We often use point conditioning with continuous RVs for which

P(Y =y) =
PX<z,Y=y) =0
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In this case, the conditional distribution function is defined as a limit:

Fxy (@Y =y) = lmPx(zly <Y <y+h)

p PX <2y <Y <Y +h)
= 1m
h—0  Ply<Y <y-+h)

= i f—xoo fyy+h fXY(u, Zf)dtdu
n hli% y+h
fy fy(v)dv

We can apply the mean-value theorem to this expression to get

. f_zoo thy(U, t')du
Fx|y((£‘Y:y) = Illli% hfy(t”) )

forsome y < t' <y + handsomey <t’ <y -+ h.

Then in the limit,

F)ﬂy(l"y = y) =

More often, we find the conditional density function, which has a nicer form:

fX\Y(ﬂZ/) =

2. Non-point conditioning

Another common conditional distribution is given by

Fx(z|Y <y) =

when Fy (y) > 0.

CONDITIONAL JOINT PROBABILITIES ARE ALSO POSSIBLE:

EX:

P(X <z,Y <y,x; < X < 19)
P($1<X§$2)

ny(I,y|I1 < X S ZEQ) =

The denominator can be expressed directly in terms of the marginal distribution function for X
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Consider the regions of X in the numerator:
X<znNa <X <x9
Use number line in x to determine regions:

OZL'SfL’l

o 11 <x < Iy

e T >y

0, r <1
P(r1<X<x,Y<y)
Fxy(z,ylzr < X < x5) = “Pai<X<m) 0 U1 <T<Tp
P(x1<X<x3,Y <y)
P(x1<X<z2) x> T2

This conditional joint distribution function can be written as:

0, r <1
Fxy (z,y)—F ,
Pxy(z,yler X Swp)= § PR, oy <z <
Fxy (z2,y)—Fxy (®1,y)
Fx(z2)—Fx(z1)

T > Ty

TOTAL PROBABILITY AND BAYES’ THEOREM
(for point conditioning)

The conditional density for Y given X = x is

~ fxv(z,y)
frix(ylz) = ()

= fxv(z,y) = (3)
4)

We can find the marginal density of Y as

frly) = (&)
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By applying (3) to (5), we get

DEFN | The Total Probability Law for point conditioning:

To calculate fxy(x|y), we can apply (3) to the definition for fxy (x|y) to get

fxiy(zly) =

Then applying (7) yields

DEFN | Bayes’ Rule for point conditioning:

fxyy(zly) =




