EEL 5544 Noise in Linear Systems Lecture 17

FUNCTIONS OF ONE RV

- Let's consider the basic ways in which a function can transform a random variable:
- In what follows, we will only consider the case where the input random variable is continuous
- We use the exponential random variable to illustrate the effects of different transformations
- Let X be an exponential random variable with parameter 1 and $f_X(x) = e^{-x}u(x)$

- 1. Functions of the form Y = X + b
 - Then $F_Y(y)$
 - Thus $F_Y(y) =$ and $f_Y(y) =$
 - Note that the exponential density $F_X(x)$ is first nonzero at x = 0, so $F_Y(y)$ is first nonzero at $y b = 0 \Rightarrow y = b$
 - Example: b = 2

- So, adding a constant just ______ the density
- 2. Functions of the form Y = aX, where 0 < a < 1

Let's start with a graphical approach:

Example: a = 0.5

So the probability is concentrated over a smaller range \Rightarrow the density is _____ $F_Y(y) =$

Thus $F_Y(y) =$ and $f_Y(y) =$ Since a < 1, then 1/a > 1

The overall effect is that the density is _____

Example: a = 0.5

 $f_Y(y) = 2e^{-2y}$ (Y is also exponential)

3. Functions of the form Y = aX, where a > 1 Again, start with a graphical approach:
Example: a = 2

So the probability is now spread out over a larger range

 \Rightarrow the density is _____

As before, $F_Y(y) = F_X(y/a)$ and $f_Y(y) = \frac{1}{a}f_X(y/a)$

Since a > 1, then 1/a < 1

The overall effect is that the density is _____ Example: a = 2

 $f_Y(y) = 0.5e^{-y/2}$ (Y is still exponential)

4. Functions of the form Y = -XStart with the graphical approach:

So the probability density at every point x is move to every point -x. The density is

To verify this, let's check the mathematics:

5. Functions of the form Y = aX, a < 0

This case combines the previous cases: the probability density is flipped and stretched or compressed

Mathematically, $F_Y(y) =$ Thus $F_Y(y) =$ and $f_Y(y) =$

Note that since a < 0, the density is still non-negative everywhere.

Comparing with the previous cases Y = aX for a > 0, we can give a single formula for the density as

$$f_Y(y) =$$

- 6. General transformations Y = g(X)
 - Since any continuous function can be modeled as a series of infinitesimally small linear pieces, the previous types of changes to the density represent everything that can happen:
 - The density can be:

1.

2.

3. 4.

- Note that for general functions, all of these may apply at different points of the function.