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EEL 5544 Lecture 19

GENERATING RANDOM VARIABLES

• To generate a random variable with an arbitrary distribution, we would like to:

1. Generate a Uniform random variable on (0, 1], U

2. Apply a function g to U such that if X = g(U), then X has the desired distribution

• We begin by making an observation: Suppose X is a random variable with distribution
function FX(x)

Then what is the distribution of Y = FX(X)?

FY (y) = P (Y ≤ y)

=

=

=

=

and

FY (y) =

{
0, y ≤ 0

1, y ≥ 1

By inspection Y is a random variable!

• Thus to generate a random variable X with distribution function FX(x), we can use the
following procedure:

• Transformation Method
To generate a RV X with a continuous distribution:

1. Generate a random variable U that is distributed uniform on [0, 1] using commonly
available methods.

2. Let X = F−1
X (U)
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Proof:

It is a notational nightmare if we straight away let X = F−1
X (U) so instead, let’s first just let

Z = F−1
X (U)

Then

FZ(z) = P
(
F−1

X (U) ≤ z
)

=

=

=

because

So Z has the desired distribution. Replacing Z with X finishes the proof.

Example: Generate a random variable X that has an exponential distribution with parameter λ

To generate a RV X with a discrete distribution on a consecutive subset of the integers:

1. Generate a random variable U that is distributed uniform on [0, 1] using commonly
available methods.
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2. Let X = k if FX(k − 1) < U ≤ FX(k).

Proof:

Again, in order to avoid confusing notation, let’s let Z = k if FX(k − 1) < U ≤ FX(k).

P (Z = k) =

=

which is the desired probability mass at point k

Again, replace Z with X , and the proof is complete.

FUNCTIONS OF MULTIPLE RANDOM VARIABLES:

ONE FUNCTION OF SEVERAL RANDOM VARIABLES

• We often have situations in which we are interested in a function that involves two or more
random variables

• For instance, if X and Y are random variables, then we may be interested in the following:

– The signal X is received in the presence of additive noise Y , Z = X + Y

– A device has two identical components. Let X and Y be the time until each component
fails. Let Z be the time until the device stops working, which can be:

∗ Only when both components fail: Z = max(X, y)

∗ When either component fails: Z = min(X, Y )

– A random signal is modulated by another signal, Z = XY .

– The Euclidean distance of a point in a plane is Z =
√

X2 + Y 2

• I’ll use a more general notation than the book’s notation at this point.

Let the random variables that are input to the function g be denoted by

X1, X2, . . . , Xn = Xn

Then Z = g(Xn)
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• The solutions to problems of the from Z = g(Xn) are not fundamentally different from the
solutions to problems of the form Z = g(X).

We just have to be a little more careful.

Consider the distribution function for Z,

FZ(z) = P [g(Xn) ≤ z]

Let Rz = {xn|g(xn) ≤ z}. Then

FZ(z) = P [Xn ∈ Rz]

The problem is that the region Rz is not necessarily rectangular, in which case the probability
of Xn ∈ Rz cannot be directly calculated from the distribution function

However, the probability of any region can be calculated by integrating the density over that
region:

FZ(z) =

∫
· · ·

∫
xn∈Rz

fXn(x1, x2, . . . , xn)dx1dx2 · · · dxn

This is best illustrated by an example:

Example: Let Z = X + Y . Find the distribution and density functions for Z in terms of
the joint density function for X and Y .
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• Note that if X and Y are s.i., then

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx

= [fX ∗ fY ] (z),

where ∗ represents the operator

Example: X and Y are independent exponential random variables, each with parameter
λ = 1
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• Applying this technique repeatedly for sums of multiple random variables would be difficult.
We will later investigate more powerful techniques to deal with sums of multiple random
variables.

USING CONDITIONAL PDFS TO FIND THE PDF OF

A FUNCTION OF SEVERAL RVS

• Let Z = g(X, Y )

• If we condition on Y = y, then g(X, y) is a function of only one RV, so we can use the
techniques from the previous sections to find

fZ|Y (z|Y = y)

• Then
fZ(z) =

∫ ∞

−∞
fZ|Y (z|y)fY (y)dy

by the Law of Total Probability


