EEL 5544 Noise in Linear Systems Lecture 24

GENERAL BIVARIATE GAUSSIAN DISTRIBUTION

X, Y are jointly Gaussian if and only if the joint density of X and Y can be written as
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e An equivalent condition that may be easier to work with is:

X and Y are jointly Gaussian if and only if a X + 0Y is a Gaussian random
variable for any real a and b

e pdfis centered at (px, py)

e pdf is bell-shaped:
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e Additional insight can be gained from considering contours of equal prob. density

For equal prob.:
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e Equation (1) is the equation for an ellipse:
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Fig. 4.4.1. Equal-probability contours for two Gaussian random variables: (a) uncorrelated
equal variance; {(b) uncorrelated unequal variance; (¢) correlated unequal variance.

(From Komo, Random Signal Analysis...)

-When pxy = 0, X and Y are s.i., and equal-prob. contour ellipse is aligned w/ x- and
y-axes:
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(From Stark and Woods, Probability and Random Processes...)



-When px y # 0,the major axis is at an angle given by
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Note that oy = 0y = 0 = 45 degrees
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Joint Gaussian RVs, ux =puy =0, 0x =0y = 2, pxy =0.9
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(h) equiprobability contours

(From Stark and Woods, Probability and Random Processes...)



SPECIAL CASE: JOINTLY GAUSSIAN RANDOM VARIABLES

WITH ZERO MEAN AND UNIT VARIANCE

DEFN| Two Gaussian random variables X and Y that each have mean O and variance
1 are said to be jointly Gaussian if their joint density function can be written as
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e The marginal pdfs can be found by completing the square.

Ex: Find the marginal pdf of X:

The marginal density for X is given by
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Take the argument of the exponential and complete the square in y:
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Then the marginal density for X is
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Therefore, we have shown that X is Gaussian with yx = 0 and 0% =1
Similarly, Y is Gaussian with py = 0 and 03 = 1

Note that X and Y can each be Gaussian without being jointly Gaussian.

Ex: If the joint density of X and Y is given by

fxv(wy) = S-exp {w}

X (1 + xyexp{—(:z:2 +y? — 2)}) ,

1

then X and Y are each Gaussian but clearly not jointly Gaussian.

Under what conditions are mean (, variance 1, jointly Gaussian RV statistically independent?

We know that if two RVs X and Y are s.1., then
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which occurs if and only if p = 0.

In other words, uncorrelated jointly Gaussian random variables are also statistically independent



