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EEL 5544 Noise in Linear Systems Lecture 24

GENERAL BIVARIATE GAUSSIAN DISTRIBUTION

X , Y are jointly Gaussian if and only if the joint density of X and Y can be written as
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• An equivalent condition that may be easier to work with is:

X and Y are jointly Gaussian if and only if aX + bY is a Gaussian random
variable for any real a and b

• pdf is centered at (µX , µY )

• pdf is bell-shaped:
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• Additional insight can be gained from considering contours of equal prob. density
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• Equation (1) is the equation for an ellipse:

(From Komo, Random Signal Analysis...)

-When ρX,Y = 0, X and Y are s.i., and equal-prob. contour ellipse is aligned w/ x- and
y-axes:

(a) σx = σy; ρXY = 0 (b) σx > σy; ρXY = 0 (c) σx < σy; ρXY = 0

(From Stark and Woods, Probability and Random Processes...)
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-When ρX,Y 6= 0,the major axis is at an angle given by

θ =
1

2
arctan

(
2ρX,Y σXσY

σ2
X − σ2

Y

)
Note that σX = σY ⇒ θ = 45 degrees

(d) (e) (f)

Joint Gaussian RVs, µX =µY =0, σX =σY = 2, ρXY =0.9

(g) pdf (h) equiprobability contours

(From Stark and Woods, Probability and Random Processes...)
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SPECIAL CASE: JOINTLY GAUSSIAN RANDOM VARIABLES

WITH ZERO MEAN AND UNIT VARIANCE

DEFN Two Gaussian random variables X and Y that each have mean 0 and variance
1 are said to be jointly Gaussian if their joint density function can be written as
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• The marginal pdfs can be found by completing the square.

Ex: Find the marginal pdf of X:

The marginal density for X is given by
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∫ ∞
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Take the argument of the exponential and complete the square in y:

x2 − 2ρxy + y2 = y2 − 2ρxy + ρ2x2 + x2 − ρ2x2

= (y − ρx)2 + x2 − ρ2x2

Then the marginal density for X is
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• Therefore, we have shown that X is Gaussian with µX = 0 and σ2
X = 1

• Similarly, Y is Gaussian with µY = 0 and σ2
Y = 1

• Note that X and Y can each be Gaussian without being jointly Gaussian.

Ex: If the joint density of X and Y is given by
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then X and Y are each Gaussian but clearly not jointly Gaussian.

• Under what conditions are mean 0, variance 1, jointly Gaussian RVs statistically independent?

We know that if two RVs X and Y are s.i., then

fXY (x, y) = fX(x)fY (y)
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which occurs if and only if ρ = 0.

• In other words, uncorrelated jointly Gaussian random variables are also statistically independent


