EEL 5544 Noise in Linear Systems Lecture 35

PROPERTIES OF AUTOCORRELATION FUNCTIONS

- Given a 2nd-order RP X(t), its autocorrelation functions satisfies:
 - (1) $R_X(t,t) \ge 0$ (positive power)

(2)
$$R_X(t_1, t_2) = R_X(t_2, t_1)$$
 (symmetric)

$$(3) |R_X(t_1, t_2)| \le \sqrt{R_X(t_1, t_1)R_X(t_2, t_2)}$$

(4)
$$R_X$$
 is

- Note 1: Property (4) is harder to prove than (1)-(3). In this class, we will usually only test property (4) by testing an equivalent condition in the frequency domain.
- Note 2: property (4) implies properties (1)-(3).
- Note 3: autocovariance functions also satisfy properties (1)-(4):
 Pf: consider Y(t) = X(t) μ_X(t)
 Then R_Y(t₁, t₂) = C_X(t₁, t₂)
- Note 4: Any symmetric, nonnegative definite function $C(t_1, t_2)$ is an autocovariance function of some 2nd-order RP

• Note 5: Gaussian RPs are completely specified by $\mu_X(t)$ and Cov $\{X(t_1), X(t_2)\}$, so only need to know mean and autocovariance functions

Examples

STATIONARY RANDOM PROCESSES

DEFN A RP X(t) is *strict-sense stationary* (stationary or strictly stationary) if $F_{X,n}(x_1, x_2, \dots, x_n; t_1, t_2, \dots, t_n)$ $= F_{X,n}(x_1, x_2, \dots, x_n; t_1+t_0, t_2+t_0, \dots, t_n + t_0)$ for each $n \in \mathbb{Z}^+$, each choice of t_1, t_2, \dots, t_n in \mathbb{T} and all $t_0 \in \mathbb{T}$.

- abbreviate *strict-sense stationary* by *SSS*
- also called *shift-invariant*
- Note: the definition requires that T be closed under addition (i.e., if a, b ∈ T then a+b ∈ T.) (This is true for many sets of interest:R, [0, ∞), Z, Z⁺)
 Examples

CONSEQUENCES OF STATIONARITY

- Consider X(t) for fixed $t = t_0$
- Then $X(t_0)$ is a RV
- The mean $\mu_X(t_0) = E[X(t_0)]$ depends only on $f_{X,1}(x;t_0)$
- By define of SSS, $f_{X,1}(x; t_0) = f_{X,1}(x; t_0 + \tau)$ for any $\tau \in \mathbb{T}$
 - $\Rightarrow f_{X,1}(x;t_0)$ does not depend on t_0
 - $\Rightarrow \mu_X(t_0)$ does not depend on t_0
 - $\Rightarrow \mu_x(t) = \mu_X$ (a constant)
- If X(t) is SSS, $f_{X,2}(x_1, x_2; t + \tau, t) = f_{X,2}(x_1, x_2; t_0 + \tau, t_0)$ (i.e., does not depend on t, but may depend on τ
 - $\Rightarrow R_X(t+\tau,t)$ does not depend on t, but may depend on τ

For convenience, we write $R_X(\tau)$ in this case

• For the covariance function of a SSS RP,

$$C_X(t+\tau,t) = R_X(t+\tau,t) - \mu_X(t+\tau)\mu_X(t)$$

= $\mathbb{R}_X(\tau) - \mu_X^2$
= $C_X(\tau)$

Summary

$$\mu_X(t) = \mu_X \tag{S1}$$

$$R_X(t+\tau,t) = R_X(\tau) \tag{S2}$$

$$C_X(t+\tau,t) = C_X(\tau) \tag{S3}$$

We can use these properties to define weaker types of stationarity:

DEFN A 2nd-order RP X(t) is _______ if (S1) and (S2) hold for all t and τ .

DEFN A 2nd-order RP X(t) is

if (S3)

L35-4

holds for all t and τ .

Notes

- 1. For X(t) WSS, $C_x(t+\tau, t) = R_X(\tau) \mu_X^2$, so X(t) is also CSS _____
- 2. Does CSS \Rightarrow WSS?

Example

PROPERTIES OF AUTOCORRELATION FUNCTION FOR WIDE-SENSE RPS

For real WSS RPs, the three properties of the autocorrelation function simplify to:

I. $R_X(0) = E[X^2(t)] \ge 0$ (______) II.

$$R_X(\tau) = E[X(t+\tau)X(t)] = E[X(t)X(t+\tau)]$$

= $E[X(t_1-\tau)X(t_1)]$, where $t_1 = t+\tau$
= $R_X(-\tau)$ (_____)

III. $|R_X(\tau)| \le R_X(0)$ (_____) *Proof:* From previous class,

$$|R_X(t_1, t_2)| \leq \frac{R_X(t_1, t_1) + R_X(t_2, t_2)}{2} \\ = \frac{R_X(0) + R_X(0)}{2}$$

Example