EEL 5544 Noise in Linear Systems Lecture 36

SPECIAL CASE: WSS GAUSSIAN RPS

- For Gaussian random processes, the *n*-dimensional distribution functions are completely specified by the and
- If $X(t)$ is Gaussian and WSS, the means and autocovariances are shift-invariant
- Thus, if a random process is Gaussian and WSS, it is

MULTIPLE RANDOM PROCESSES

DEFN The *cross-correlation function* for two second-order random processes $X(t)$ and $Y(t)$ is $R_{XY}(t, s) = E[X(t)Y(s)]$

DEFN The *cross-covariance function* for two second-order random processes $X(t)$ and $Y(t)$ is

$$
C_{XY}(t,s) = E\left\{ [X(t) - \mu_X(t)] [Y(s) - \mu_Y(s)] \right\}
$$

Note that

$$
C_{XY}(t,s) = R_{XY}(t,s) - \mu_X(t)\mu_Y(s)
$$

DEFN Two second-order random processes $X(t)$ and $Y(t)$ are uncorrelated if

$$
C_{XY}(t,s) =
$$

$$
\Rightarrow R_{XY}(t,s) =
$$

DEFN Two random processes $X(t)$ and $Y(t)$ are *statistically independent* if for each $n \in \mathbb{Z}^+$ and each $t_1, t_2, \ldots, t_n, s_1, s_2, \ldots, s_n \in \mathbb{T}$,

 $[X(t_1) X(t_2) ... X(t_n)]$ and $[Y(t_1) Y(t_2) ... Y(t_n)]$

are independent random vectors.

- Note that, as with random variables and random vectors, for random processes, s.i. \Rightarrow uncorrelated, but uncorrelated does not necessarily imply s.i.
- For jointly Gaussian RPs, s.i. ⇔ uncorrelated

DEFN Two RPs $X(t)$ and $Y(t)$ are *jointly wide-sense stationary* if

- jointly WSS is a stronger condition than each RP being WSS
- for jointly WSS RPs,

$$
R_{X,Y}(t,s) = R_{X,Y}(t-s) = R_{X,Y}(\tau).
$$

• If $X(t)$, $Y(s)$ are uncorrelated and $X(t)$ and $Y(t)$ are WSS, then $C_{X,Y}(t,s) = 0 \Rightarrow R_{X,Y}(t,x) = \mu_X \mu_Y$

 \Rightarrow $R_{X,Y}(t, s)$ is a constant that does not depend on either t or s ∴ uncorrelated RPs that are individually WSS are also jointly WSS Examples

WHITE NOISE

- For second-order RPs, $E[X^2(t)] < \infty$, $\forall t \in \mathbf{T}$.
- White noise is a mathematical idealization of the thermal noise process
- Consider thermal noise measurement system:

• measurement shows power $4kTRB$ in each frequency band B

\Rightarrow infinite power

- 1. model not valid for extremely high freqs.
- 2. no system has infinite bandwidth

∴ we assume that thermal noise can be modeled as white noise, with equal power at all frequencies

• autocorrelation fcn for white noise is

$$
R_X(\tau) = \frac{N_0}{2} \delta(\tau),\tag{1}
$$

where the value of $N_0/2$ is called the (two-sided) noise power spectral density

- We use white Gaussian noise (WGN) to model thermal noise. For engineering purposes, we treat WGN as a zero-mean Gaussian random process with autocorrelation function given by [\(1\)](#page-2-0)
- If $X(t)$ is WGN, then $E[X^2(t)] = R_X(0) = \infty$, so the mean does not necessarily exist.
- A more careful definition of WGN is $X(t)$ is a WGN process if, when input to an LTI filter with $h(t) < \infty$ for all t, then $Y(t) = [h * X](t)$ is a zero-mean Gaussian random process.

TIME-INVARIANT FILTERING

$$
X(t) \longrightarrow h(t) \longrightarrow Y(t)
$$

$$
Y = X * h = h * X
$$

\n
$$
\Rightarrow Y(t) = \int_{-\infty}^{\infty} X(\tau)h(t - \tau)d\tau
$$

• Stability (BIBO = bounded-input, bounded-output): Necessary & sufficient condition is $\exists M_h < \infty$

$$
\int_{-\infty}^{\infty} |h(t)| dt \leq M_h.
$$

Then $|X(t)| < \infty \forall t \Rightarrow |Y(t)| < \infty \forall t$.

CALCULATION OF MEAN AND AUTOCORRELATION

FUNCTIONS FOR WSS RPS

- Suppose:
	- $X(t)$ is WSS 2nd-order RP with mean μ_X and autocorrelation $R_X(\tau)$
	- $X(t)$ input to BIBO LTI system with impulse response $h(t)$.
	- $-Y(t)$ denotes the output process.

Then

$$
\mu_Y(t) = E \left[\int_{-\infty}^{\infty} X(\tau) h(t - \tau) d\tau \right]
$$

$$
= \int_{-\infty}^{\infty} E \left[X(\tau) \right] h(t - \tau) d\tau
$$

$$
= \mu_X \int_{-\infty}^{\infty} h(t - \tau) d\tau
$$

$$
= \mu_X \int_{-\infty}^{\infty} h(\tau) d\tau
$$

 \Rightarrow The mean of $Y(t)$ is a constant.

The autocorrelation function for $Y(t)$ is

$$
R_Y(t_1, t_2) = E\{Y(t_1)Y(t_2)\}
$$

\n
$$
= E\left\{\int_{-\infty}^{\infty} X(t_1 - u)h(u)du \int_{-\infty}^{\infty} X(t_2 - v)h(v)dv\right\}
$$

\n
$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E\left[X(t_1 - u)X(t_2 - v)\right]h(u)h(v)du dv
$$

\n
$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_X(t_1 - t_2 - u + v)h(u)h(v)du dv
$$

• Note that R_Y only depends on t_1 and t_2 through $t_1 - t_2$.

This with the fact that the mean of $Y(t)$ is constant $\Rightarrow Y(t)$ is also WSS.

• The expression for R_Y can be further simplified as

$$
R_Y(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_X(\tau - u + v) h(u) h(v) du dv
$$

= $(h * \tilde{h} * R_X)(\tau),$ (2)

where $\tilde{h}(t) = h(-t)$ (the time-reverse of $h(t)$)

• To make computation even simpler, it is often convenient to compute an intermediate function. Let

$$
f(\tau) = (h * \tilde{h})(\tau)
$$

=
$$
\int_{-\infty}^{\infty} h(t)h(t - \tau)d\tau.
$$

Then

$$
R_Y(\tau) = (f * R_X)(\tau) \tag{3}
$$

- Note that:
	- $h(t \tau)$ is a time-shifted version of $h(t)$
	- typically computing $f(\tau)$ is easier than performing normal convolution
	- $f(\tau)$ is an even function

SPECIAL CASE: : WHITE GAUSSIAN NOISE (WGN)

- For WGN, $R_X(\tau) = \frac{N_0}{2} \delta(\tau)$
- Then using [\(3\)](#page-4-0) and the sifting property of the delta function, $R_Y(\tau) = \frac{N_0}{2} f(\tau)$