EEL 5544 Lecture 7

RANDOM VARIABLES (RVS)

• What is a random variable?

We define a random variable is defined on a probability space (Ω, F, P) as a _______
from _____ to _____

Examples

- Recall that we cannot define probabilities for all possible subsets of a continuous sample space Ω
- Thus, in defining a random variable X as a function on Ω, we must ensure that any region of X for which we wish to assign probability must map to an *event* in the event class F
- We will only assign probabilities to Borel sets of the real line

DEFN A *real random variable* $X(\omega)$ defined on a probability space (Ω, \mathcal{F}, P) is a real-valued function on Ω that satisfies the following: (i) For every Borel set of real numbers $B \in \mathcal{B}$, the set $E_B \triangleq \{\xi \in \Omega, X(\xi) \in B\}$ is an event and (ii) $P[X = -\infty] = 0$ and $P[X = +\infty] = 0$.

- The Borel field on *R* contains all sets that can be formed from countable unions, intersections, and complements of sets of the form {*x*|*x* ∈ (−∞, *x*]}
- Thus, it is convenient to define a function that assigns probabilities to sets of this form:

DEFN	If	(Ω, \mathcal{F}, P)	is	a	prob	space	with	$X(\omega)$	a	real	RV	on	Ω,	the
	(_), d	leno	ted _		is							

- $F_X(x)$ is a prob. measure
- Properties of F_X :

1.
$$0 \le F_X(x) \le 1$$

2. $F_X(-\infty) = 0$ and $F_X(\infty) = 1$

F_X(x) is monotonically nondecreasing,
i.e., F_X(a) ≤ F_X(b) iff a ≤ b

4.
$$P(a < X \le b) = F_X(b) - F_X(a)$$

5. $F_X(x)$ is continuous on the right, i.e., $F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b)$

(The value at a jump discontinuity is the value after the jump.)

Pf omitted.

- If $F_X(x)$ is continuous function of x, then $F(x) = F(x^-)$
- If $F_X(s)$ is not a continuous function of x, then from above,

$$F_X(x) - F_X(x^-) = P[x^- < X \le x]$$

=
$$\lim_{\epsilon \to 0} P[x - \epsilon < X \le x]$$

=
$$P[X = x]$$

Example