EEL 5544 Lecture 8

PROBABILITY DENSITY FUNCTION

DEFN The ______ (____), $f_X(x)$, of a random variable X is the derivative (which may not exist at some places) of ______:

• Properties:

- 1. $f_X(x) \ge 0, -\infty < x < \infty$
- 2. $F_X(x) = \int_{-\infty}^x f_X(t)dt$

3.
$$\int_{-\infty}^{+\infty} f_X(x) dx = 1$$

4. $P(a < X \le b) = \int_{a}^{b} f_X(x) dx, a \le b$

5. If g(x) is a nonnegative piecewise continuous function with finite integral

$$\int_{-\infty}^{+\infty} g(x) dx = c, -\infty < c < +\infty,$$

then $f_X(x) = \frac{g(x)}{c}$ is a valid pdf.

Pf omitted.

- Note that if f(x) exists at x, then $F_X(x)$ is continuous at x and thus $P[X = x] = F(x) F(x^-) = 0$
- Recall that this does not mean that x never occurs, but that the occurrence is extremely unlikely

DEFN If $F_X(x)$ is continuous for every x and its derivative exists everywhere except at a countable set of points, then X is a

• Where $F_X(x)$ is continuous but $F'_X(x)$ is discontinuous, any positive number can be assigned to $f_X(x)$, and thus $f_X(x)$ will be assigned to every point of $f_X(x)$ when X is a continuous random variable

Uniform Continuous Random Variables

DEFN For a *uniform RV* on an interval [a, b], any two subintervals of [a, b] that have the same length will have equal probabilities. The density function is given by

$$f_X(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a}, & a \le x \le b \\ 0, & x > b. \end{cases}$$

DEFN

A ______ has probability concentrated at a countable number of values. It has a staircase type of distribution function.

PROBABILITY MASS FUNCTION

DEFN For a discrete RV, the *probability mass function* (pmf) is

EX: Roll a fair 6-sided die

X = # on top face

$$P(X = x) = \begin{cases} 1/6, & x = 1, 2, \dots, 6\\ 0, & o.w. \end{cases}$$

EX: Flip a fair coin until heads occurs *X* = # of flips

$$P(X = x) = \begin{cases} \left(\frac{1}{2}\right)^x, & x = 1, 2, \dots \\ 0, & o.w. \end{cases}$$

L8-4

IMPORTANT RANDOM VARIABLES

Discrete RVs

- 1. Bernoulli RV
 - An event $A \in \mathcal{A}$ is considered a "success"
 - A Bernoulli RV X is defined by

$$X = \begin{cases} 1, & s \in A \\ 0, & s \notin A \end{cases}$$

• The pmf for a Bernoulli RV X can be found formally as

$$P(X = 1) = P\left(X(s) = 1\right)$$
$$= P\left(\{s|s \in A\}\right) = P(A) \triangleq p$$

So,

$$P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0\\ 0 & x \neq 0, 1 \end{cases}$$

2. Binomial RV

- A Binomial RV represents the number of successes on n independent Bernoulli trials
- Thus, a Binomial RV can also be defined as the sum of n independent Bernoullis RVs
- Let X= # of successes Then the pmf of X is given by

$$P[X = k] = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k}, & k = 0, 1, \dots, n \\ 0, & \text{o.w.} \end{cases}$$

• The pmfs for two Binomial RVs with n = 10 and p = 0.2 or p = 0.5 are shown below

• The cdfs for two Binomial RVs with n = 10 and p = 0.2 or p = 0.5 are shown below

• When n is large, the Binomial pmf has a bell shape. For example, the pmf below is for n = 100 and p = 0.2

3. Geometric RV

- A Geometric RV occurs when independent Bernoulli trials are conducted until the first success
- X = # number of trials required Then the pmf or X is given by

$$P[X = k] = \begin{cases} (1-p)^{k-1}p, & k = 1, 2, \dots, n \\ 0, & \text{o.w.} \end{cases}$$

• The pmfs for two Geometric RVs p = 0.1 or p = 0.7 are shown below

• The cdfs for two Geometric RVs with p = 0.1 or p = 0.7 are shown below

- 4. Poisson RV
 - Models events that occur randomly in space or time
 - Let λ = the # of events/(unit of space or time)
 - Consider observing some period of time or space of length t and let $\alpha = \lambda t$
 - Let N= the # events in time (or space) t
 - Then

$$P(N=k) = \begin{cases} \frac{\alpha^k}{k!} e^{-\alpha}, & k = 0, 1, \dots \\ 0, & \text{o.w.} \end{cases}$$

• The pmfs for two Poission RVs with $\alpha = 0.75$ or $\alpha = 3$ are shown below

• The cdfs for two Poission RVs with $\alpha = 0.75$ or $\alpha = 3$ are shown below

• For large α , the Poisson pmf has a bell shape. For example, the pmf below if for a Poisson RV with $\alpha = 20$:

IMPORTANT CONTINUOUS RVS

- 1. <u>Uniform RV</u>:covered in example
- 2. Exponential RV
 - Characterized by single parameter λ

• Density function:

$$f_X(x) = \begin{cases} 0, & x < 0\\ \lambda e^{-\lambda x}, & x \ge 0 \end{cases}$$

• Distribution function:

$$F_X(x) = \begin{cases} 0, & x < 0\\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

- The book's definition substitutes $\lambda=1/\mu$
- Obtainable as limit of geometric RV
- The pdf and CDF for exponential random variables with λ equal to $0.25,\,1,\,{\rm or}\,4$ are shown below

3. Gaussian RV

- For large *n*, the binomial and Poisson RVs have a bell shape
- Consider the binomial:
- DeMoivre-Laplace Theorem: If n is large and p is small, then if q = 1 p,

$$\binom{n}{k} p^k q^{n-k} \approx \frac{1}{\sqrt{2\pi n p q}} \exp\left\{-\frac{(k-np)^2}{2npq}\right\}$$

• Let $\sigma^2 = npq$, $\mu = np$, then

$$P(k \text{ successes on } n \text{ Bernoulli trials})$$

$$= \binom{n}{k} p^k q^{n-k}$$

$$\approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(k-\mu)^2}{2\sigma^2}\right\}.$$

DEFN

A Gaussian random variable X has density function

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},\,$$

with parameters (mean) μ and (variance) $\sigma^2 \ge 0$.

- In fact, the sum of a large number of almost any type of independent random variables converges (in distribution) to a Gaussian random variable (Central Limit Theorem).
- The CDF of a Gaussian RV is given by

$$F_X(x) = P(X \le x)$$

=
$$\int_{-\infty}^x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt,$$

which cannot be evaluated in closed form.

• The pdf and CDFs for Gaussian random variables with $(\mu = 15, \sigma^2 = 0.25)$, $(\mu = 5, \sigma^2 = 1)$, and $(\mu = 10, \sigma^2 = 25)$

- Instead, we tabulate distribution functions for a normalized Gaussian variable with $\mu = 0$ and $\sigma^2 = 1$:
 - The CDF for the normalized Gaussian RV is defined as

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^2}{2}\right\} dt$$

- Engineers more commonly use the complementary distribution function, or *Q*-function, defined by

$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^2}{2}\right\} dt.$$

- Note that $Q(x) = 1 \Phi(x)$
- I will be supplying you with a Q-function table and a list of approximations to Q(x)
- The Q-function can also be defined as

$$Q(x) = \frac{1}{\pi} \int_0^{\pi/2} \exp\left\{-\frac{x^2}{\sin^2 \phi}\right\} d\phi.$$

(This is a fairly recent result that is in very few textbooks. This form has a finite range of integration that is often easier to work with.)

• The CDF for a Gaussian RV with mean μ and variance σ^2 is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$
$$= 1 - Q\left(\frac{x-\mu}{\sigma}\right).$$

Note that the denominator above is σ , not σ^2 . Many students use the wrong value when working tests!

• To find the prob. of some interval using the Q-function, it is easiest to rewrite the prob:

$$P(a < X \le b) = P(X > a) - P(X > b)$$
$$= Q\left(\frac{a-\mu}{\sigma}\right) - Q\left(\frac{b-\mu}{\sigma}\right)$$

Examples on board