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EEL 5544 Lecture 9

IMPORTANT RANDOM VARIABLES-CONT.

4. Laplacian RV

• The Laplacian random variable is often used to model the difference between correlated
data sources

• For example, the differences between adjacent samples of speech, images, or video are
often modeled using Laplacian random variables

• The density function for a Laplacian random variable is

fX(x) =
c

2
exp {−c|x|} ,−∞ < x < ∞

where c > 0

• The pdf for a Laplacian RV with c = 2 is shown below
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5. Chi-square RV

• Let X be a Gaussian random variable

• Then Y = X2 is a chi-square random variable
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• But in fact, chi-square random variables are much more general. For instance, if Xi,
i = 1, 2, . . . , n are s.i. Gaussian random variables with identical variances σ2, then

Y =
n∑

i=1

X2
i (1)

is a chi-square random variable with n degrees of freedom

• The chi-square random variable is usually classified as either central or non-central

• If in (1), all of the Gaussian random variables have mean µ = 0, then Y is a central
chi-square random variable

• The density of a central chi-square random variable is given by

fY (y) =

{
1

σn2n/2Γ(n/2)
y(n/2)−1e−y/(2σ2), y ≥ 0,

0, y < 0

where Γ(p) is the gamma function defined as
Γ(p) =

∫∞
0

tp−1e−tdt, p > 0

Γ(p) = (p− 1)!, p an integer > 0

Γ(1/2) =
√

π

Γ(3/2) = 1
2

√
π

• Note that for n = 2,

fY (y) =

{
1

2σ2 e
−y/(2σ2), y ≥ 0,

0, y < 0

which is an exponential density

• Thus, the sum of the squares of two s.i. zero-mean Gaussian RVs with equal variance
is exponential!

• Note also that although the Gaussian random variables that make up the central chi-square
RV have zero mean, the chi-square RV has mean > 0
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• The pdf for chi-square RVs with 1,2, 4, or 8 degrees of freedom and σ2 = 1 are shown
below
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• The CDF for a central chi-square RV can be found through repeated integration by
parts to be

FY (y) =

{
1− e−y/(2σ2)

∑m−1
k=0

1
k!

(
y

2σ2

)k
, y ≥ 0

0, y < 0

• The non-central chi-square random variable has more complicated pdfs and CDFs, and
the CDF cannot be written in closed form

6. Rayleigh RV

• Consider an exponential RV Y , which is equivalent to a central chi-square RV with
2 degrees of freedom, which is equivalent to the sum of the squares of independent,
zero-mean Gaussian RVs with common variance

• Let R =
√

Y

• Then R is a Rayleigh RV with pdf

fR(r) =

{
r
σ2 e

−r2/(2σ2), r ≥ 0

0, r < 0
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• The pdf for Rayleigh RV with σ2 = 1 is shown below
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• The CDF for a Rayleigh RV is

FR(r) =

{
1− e−r2/(2σ2), r ≥ 0

0, r < 0

• The amplitude of a radio signal in a dense multipath environment is often modeled as
a complex Gaussian random variable with independent real and imaginary parts. Thus,
the amplitude of the waveform is a Rayleigh random variable.

7. Lognormal RV

• Consider a random variable L such that X = ln L is a Gaussian RV

• For instance in communications, we find that shadowing of communication signals by
buildings and foliage has a Gaussian distribution when the signal loss is expressed in
decibels

• Then L is a lognormal random variable with pdf given by

fL(`) =

{
1

`
√

2πσ2
exp

{
− (ln `−µ)2

2σ2

}
, ` ≥ 0

0, ` < 0
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CONDITIONAL DISTRIBUTIONS AND DENSITIES

• Given (S,A, P ) and X : S → R ( a RV on S):

DEFN For an event A ∈ A with P (A) 6= 0, the conditional distribution of X given A
is

fX(x|A) =

DEFN For an event A ∈ A with P (A) 6= 0, the conditional density of X given A is

fX(x|A) =

• Then FX(x|A) is a distribution function, and fX(x|A) is a density function.

Example Suppose that the waiting time in minutes at Wendy’s in the Reitz Union is an
exponential random variable with parameter λ = 1. Given that you have already been
waiting for two minutes, then what is

(a) the conditional distribution for your total wait time?
(b) the conditional distribution for your remaining wait time?

TOTAL PROBABILITY AND BAYE’S THEOREM

• If A1, A2, . . . , An form a partition of S, then

FX(x) = FX(x|A1)P (A1) + FX(x|A2)P (A2)

+ . . . + FX(x|An)P (An)

and

fX(x) =
n∑

i=1

fX(x|Ai)P (Ai).
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Point Conditioning:
• Suppose we want to evaluate the probability of an event given thatX =x, where X is

a continuous random variable.

• Clearly, P (X =x) = 0, so the previous definition of conditional prob. will not work.

P (A|X = x) = lim
∆x→0

P (A|x < X ≤ x + ∆x)

= lim
∆x→0

FX(x + ∆x|A)− FX(x|A)

FX(x + ∆x)− FX(x)
P (A)

= lim
∆x→0

FX(x+∆x|A)−FX(x|A)
∆x

FX(x+∆x)−FX(x)
∆x

P (A)

=
fX(x|A)

fX(x)
P (A),

if fX(x|A) and fX(x) exist.

Implication of Point Conditioning

• Note that
P (A|X = x) =

fX(x|A)

fX(x)
P (A)

⇒ P (A|X = x)fX(x) = fX(x|A)P (A)

⇒
∫ ∞

−∞
P (A|X = x)fX(x)dx =

∫ ∞

−∞
fX(x|A)dxP (A)

⇒ P (A) =

∫ ∞

−∞
P (A|X = x)fX(x)dx

(Continuous Version of Law of Total Probability)

• Once we have the Law of Total Probability, it is easy to derive the Continuous Version
of Baye’s Theorem:

fX(x|A) =
P (A|X = x)

P (A)
fX(x)

=
P (A|X = x)fX(x)∫∞

−∞ P (A|X = t)fX(t)dt
.

Example on board.


