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Chapter 9: Commonly Used Models: Narrow-Band Gaussian Noise and Shot Noise

Narrow-band, wide-sense-stationary (WSS) Gaussian noise η(t) is used often as a noise

model in communication systems.  For example, η(t) might be the noise component in the output

of a radio receiver intermediate frequency (IF) filter/amplifier.  In these applications, sample

functions of η(t) are expressed as

η η ω η ω(t) (t)cos t (t)sin t= −c c s c , (9-1)

where ωc is termed the center frequency (for example, ωc could be the actual center frequency of

the above-mentioned IF filter).  The quantities ηc(t) and ηs(t) are termed the quadrature

components (sometimes, ηc(t) is known as the in-phase component and ηs(t) is termed the

quadrature component), and they are assumed to be real-valued.

Narrow-band noise η(t) can be represented in terms of its envelope R(t) and phase φ(t).

This representation is given as

c(t) R(t)cos( t (t))η = ω +φ , (9-2)

where

2 2
c s

1
s c

R(t) (t) (t)  

(t) tan ( (t) / (t)).−

≡ η + η

≡ η ηφ

(9-3)

Normally, it is assumed that R(t) ≥ 0 and –π < φ (t) ≤ π for all time.

Note the initial assumptions placed on η(t).  The assumptions of Gaussian and WSS

behavior are easily understood.  The narrow-band attribute of η(t) means that ηc(t), ηs(t), R(t)

and φ(t) are low-pass processes; these low-pass processes vary slowly compared to cosωct ; they
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are on a vastly different time scale from cosωct.  Many periods of cosωct occur before there is

notable change in ηc(t), ηs(t), R(t) or φ(t).

A second interpretation can be given for the term narrow-band.  This is accomplished in

terms of the power spectrum of η(t), denoted as Sη(ω).  By the Wiener-Khinchine theorem,

Sη(ω) is the Fourier transform of Rη(τ), the autocorrelation function for WSS η(t).  Since η(t) is

real valued, the spectral density Sη(ω) satisfies

( ) 0

( ) ( ).

η

η η

ω ≥

ω = −ω

S

S S
(9-4)

Figure 9-1 depicts an example spectrum of a narrow-band process.  The narrow-band attribute

means that Sη(ω) is zero except for a narrow band of frequencies around ±ωc; process η(t) has a

bandwidth (however it might be defined) that is small compared to the center frequency ωc.

Power spectrum Sη(ω) may, or may not, have ±ωc as axes of local symmetry.  If ωc is

an axis of local symmetry, then

S Sη ηω ω ω ω( ) ( )+ = − +c c (9-5)

for 0 < ω < ωc, and the process is said to be a symmetrical band-pass process (Fig. 9-1 depicts a

symmetrical band-pass process).  It must be emphasized that the symmetry stated by the second

of (9-4) is always true (i.e., the power spectrum is even); however, the symmetry stated by (9-5)
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Fig. 9-1:  Example spectrum of narrow-band noise.
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may, or may not, be true.  As will be shown in what follows, the analysis of narrow-band noise is

simplified if (9-5) is true.

To avoid confusion when reviewing the engineering literature on narrow-band noise, the

reader should remember that different authors use slightly different definitions for the cross-

correlation of jointly-stationary, real-valued random processes x(t) and y(t).  As used here, the

cross-correlation of x and y is defined as Rxy(τ )  ≡ E[x(t+τ)y(t)].  However, when defining Rxy,

some authors shift (by τ ) the time variable of the function y instead of the function x.

Fortunately, this possible discrepancy is accounted for easily when comparing the work of

different authors.

η(t) has Zero Mean

The mean of η(t) must be zero.  This conclusion follows directly from

c c s cE[ (t)] E[ (t)]cos t E[ (t)]sin tη = η ω − η ω . (9-6)

The WSS assumption means that E[η(t)] must be time invariant (constant).  Inspection of (9-6)

leads to the conclusion that E[ηc] = E[ηs] = 0 so that E[η] = 0.

Quadrature Components In Terms of η and η̂

Let the Hilbert transform of WSS noise η(t) be denoted in the usual way by the use of a

circumflex; that is, � (t)η  denotes the Hilbert transform of η(t) (see Appendix 9A for a discussion

of the Hilbert transform).  The Hilbert transform is a linear, time-invariant filtering operation

applied to η(t); hence, from the results developed in Chapter 7, � (t)η  is WSS.

In what follows, some simple properties are needed of the cross correlation of η(t) and

� (t)η .  Recall that � (t)η  is the output of a linear, time-invariant system that is driven by η(t).  Also

recall that techniques are given in Chapter 7 for expressing the cross correlation between a

system input and output.  Using this approach, it can be shown easily that
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ˆ

ˆ

ˆ ˆ

ˆ

ˆˆR ( ) E[ (t ) (t)] R ( )

ˆˆR ( ) E[ (t ) (t)] R ( )

R (0) R (0) 0

R ( ) R ( ) .

ηη η

ηη η

ηη ηη

η η

τ ≡ η + τ η = − τ

τ ≡ η + τ η = τ

= =

τ = τ

(9-7)

Equation (9-1) can be used to express � (t)η .  The Hilbert transform of the noise signal can

be expressed as

� (t) (t) cos t (t) sin t (t) cos t (t) sin t

(t) sin t (t) cos t .

η η ω η ω η ω η ω

η ω η ω

= − = −

= +

c c s c c c s c

c c s c

(9-8)

This result follows from the fact that ωc is much higher than any frequency component in ηc or

η s so that the Hilbert transform is only applied to the high-frequency sinusoidal functions (see

Appendix 9A).

The quadrature components can be expressed in terms of η and �η .  This can be done by

solving (9-1) and (9-8) for

η η ω η ω

η η ω η ω

c c c

s c c

(t) (t)cos t � (t)sin t

(t) � (t)cos t (t)sin t .

= +

= −
(9-9)

These equations express the quadrature components as a linear combination of Gaussian η.

Hence, the components ηc and ηs are Gaussian.  In what follows, Equation (9-9) will be used to

calculate the autocorrelation and crosscorrelation functions of the quadrature components.  It

will be shown that the quadrature components are WSS and that ηc and ηs are jointly WSS.

Furthermore, WSS process η(t) is a symmetrical band-pass process if, and only if, ηc and ηs are
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uncorrelated for all time shifts.

Relationships Between Autocorrelation Functions Rη , Rηc  and Rηs

It is easy to compute, in terms of Rη, the autocorrelation of the quadrature components.

Use (9-9) and compute the autocorrelation

R ( ) E[ (t) (t )]

E[ (t) (t )]cos t cos (t ) E[ � (t) (t )]sin t cos (t )

E[ (t) � (t )]cos t sin (t ) E[ � (t) � (t )]sin t sin (t ) .

η τ η η τ

η η τ ω ω τ η η τ ω ω τ

η η τ ω ω τ η η τ ω ω τ

c c c

c c c c

c c c c

= +

= + + + + +

+ + + + + + 

(9-10)

This last result can be simplified by using (9-7) to obtain

R ( ) R ( )[cos t cos (t ) sin t sin (t )]

�R ( )[cos t sin (t ) sin t cos (t )] ,

η η

η

τ τ ω ω τ ω ω τ

τ ω ω τ ω ω τ

c c c c c

c c c c

= + + +

+ + − + 

a result that can be expressed as

R ( ) R ( )cos �R ( )sin .η η ητ τ ω τ τ ω τc c c= +  (9-11)

The same procedure can be used to compute an identical result for Rηs ; this leads to the

conclusion that

c sR ( ) R ( )η ητ ≡ τ (9-12)

for all τ.

A somewhat non-intuitive result can be obtained from (9-11) and (9-12).  Set τ = 0 in the

last two equations to conclude that
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c sR (0) R (0) R (0)η η η= = , (9-13)

an observation that leads to

2 2
c s

c s

E[ (t)] E[ (t)] E[ (t)]

Avg Pwr in (t) = Avg Pwr in (t) = Avg Pwr in (t).

2η = η = η

η η η
(9-14)

The frequency domain counterpart of (9-11) relates the spectrums Sη , Sηc  and Sηs .

Take the Fourier transform of (9-11) to obtain

( )

( )

c cc s

c c c c

1( ) ( ) ( ) ( )
2

1 sgn( ) ( ) sgn( ) ( ) .
2

η η η η

η η

ω = ω = ω + ω + ω − ω

− ω − ω ω − ω − ω + ω ω + ω

S S S S

S S

(9-15)

Since ηc and ηs are low-pass processes, Equation (9-15) can be simplified to produce

c c c cc s( ) ( ) ( ) ( ),

0, otherwise,

η η η ηω = ω = ω + ω + ω − ω −ω ≤ ω ≤ ω

=

S S S S
(9-16)

a relationship that is easier to grasp and remember than is (9-11).

Equation (9-16) provides an easy method for obtaining Sηc  and/or sηS  given only Sη .

First, make two copies of Sη(ω).  Shift the first copy to the left by ωc, and shift the second copy

to the right by ωc.  Add together both shifted copies, and truncate the sum to the interval −ωc ≤ ω

≤ ωc to get Sηc .   This “shift and add” procedure for creating Sηc  is illustrated by Fig. 9-2.

Given only Sη(ω), it is always possible to determine Sηc  (which is equal to sηS ) in this manner.

The converse is not true; given only Sηc , it is not always possible to create Sη(ω) (Why? Think
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Fig. 9-2:  Creation of 
cηS from shifting and adding copies of ηS .

about the fact that Sη ωc( )  must be even, but Sη(ω) may not satisfy (9-5)).

The Crosscorrelation Rη ηc s

It is easy to compute the cross-correlation of the quadrature components.  From (9-9) it

follows that

ωc−ωc

Sη(ω)

Sη(ω+ωc) ,  ⎮ω⎮ < ωc

ωc−ωc

Sη(ω−ωc) ,  ⎮ω⎮ < ωc

ωc−ωc

Sηc
(ω) = Sη(ω+ωc) + Sη(ω−ωc) ,  ⎮ω⎮ < ωc

−ωc ωc
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R ( ) E[ (t ) ( )]

E[ (t ) � (t)]cos (t )cos t E[ (t ) (t)]cos (t )sin t

E[ � (t ) � (t)]sin ( t )cos t E[ � (t ) (t)]sin ( t )sin t .

η η τ η τ η

η τ η ω τ ω η τ η ω τ ω

η τ η ω τ ω η τ η ω τ ω

c s c s

c c c c

c c c c

= +

= + + − + +

+ + + − + +

t

 

(9-17)

By using (9-7), Equation (9-17) can be simplified to obtain

R ( ) R ( )[ sin t cos (t ) cos t sin (t )]

�R ( )[cos t cos (t ) sin t sin (t )] ,

η η η

η

τ τ ω ω τ ω ω τ

τ ω ω τ ω ω τ

c s c c c c

c c c c

= − + + +

− + + + 

a result that can be written as

R ( ) R ( )sin �R ( )cosη η η ητ τ ω τ τ ω τc s c c= − . (9-18)

The cross-correlation of the quadrature components is an odd function of τ.  This follows

directly from inspection of (9-18) and the fact that an even function has an odd Hilbert

transform.  Finally, the fact that this cross-correlation is odd implies that R ( )η ηc s 0  = 0; taken at

the same time, the samples of ηc and ηs are uncorrelated and independent.  However, as

discussed below, the quadrature components ηc(t1) and ηs(t2) may be correlated for t1 ≠ t2.

The autocorrelation Rη of the narrow-band noise can be expressed in terms of the

autocorrelation and cross-correlation of the quadrature components ηc and ηs .   This important

result follows from using (9-11) and (9-18) in

R ( )cos R ( )sin R ( )cos �R ( )sin cos

R ( )sin �R ( )cos sin .

η η η η η

η η

τ ω τ τ ω τ τ ω τ τ ω τ ω τ

τ ω τ τ ω τ ω τ

c c c s c c c c

c c c

+ = +

+ −
(9-19)
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However, Rη results from simplification of the right hand side of (9-19), and the desired

relationship

R ( ) R ( )cos R ( )sinη η η ητ τ ω τ τ ω τ= +c c c s c (9-20)

follows.

Comparison of (9-16) with the Fourier transform of (9-20) reveals an “unsymmetrical”

aspect in the relationship between Sη , Sηc and Sηs .  In all cases, both Sηc and Sηs can be

obtained by simple translations of Sη  as is shown by (9-16).  However, in general, Sη  cannot be

expressed in terms of a similar, simple translation of Sηc (or Sηs ), a conclusion reached by

inspection of the Fourier transform of (9-20).  But, as shown next, there is an important special

case where R ( )η η τc s  is identically zero for all τ, and Sη  can be expresses as simple translations

of Sηc .

Symmetrical Bandpass Processes

Narrow-band process η(t) is said to be a symmetrical band-pass process if

S Sη ηω ω ω ω( ) ( )+ = − +c c (9-21)

for 0 < ω < ωc.  Such a bandpass process has its center frequency ωc as an axis of local

symmetry. In nature, symmetry usually leads to simplifications, and this is true of Gaussian

narrow-band noise.  In what follows, we show that the local symmetry stated by (9-21) is

equivalent to the condition R ( )η η τc s = 0  for all τ  (not just at τ  = 0).

The desired result follows from inspecting the Fourier transform of (9-18); this transform

is the cross spectrum of the quadrature components, and it vanishes when the narrow-band

process has spectral symmetry as defined by (9-21).  To compute this cross spectrum, first note

the Fourier transform pairs
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R ( ) ( )

�R ( ) Sgn( ) ( ) ,

η η

η η

τ ω

τ ω ω

↔

↔ −

S

Sj
(9-22)

where

Sgn( )
for

for
ω

ω

ω
≡

+

− <

R
S|
T|

1

1

 

 

> 0

0
(9-23)

is the commonly used “sign” function.  Now, use Equation (9-22) and the Frequency Shifting

Theorem to obtain the Fourier transform pairs

R ( ) sin ( ) ( )

�R ( ) cos Sgn( ) ( ) Sgn( ) ( ) .

η η η

η η η

τ ω τ ω ω ω ω

τ ω τ ω ω ω ω ω ω ω ω

c c c

c c c c c

j
↔ − − +

↔ − − + + +

1
2

1
2

S S

S S
j

(9-24)

Finally, use this last equation and (9-18) to compute the cross spectrum

S

S S

η η η η

η η

ω τ

ω ω ω ω ω ω ω ω

c s c s

j c c c c

( ) [ R ( )]

( )[ Sgn( )] ( )[ Sgn( )] .

=

= − − − − + + +

F

1
2

1 1
(9-25)

Figure 9-3 depicts example plots useful for visualizing important properties of (9-25).

From parts b) and c) of this plot, note that the products on the right-hand side of (9-25) are low

pass processes.  Then it is easily seen that
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c

c c c cc s

c

0 ,

( ) j[ ( ) ( )],

0 , .

η η η η

ω > ω⎧
⎪
⎪ω = − ω − ω − ω + ω −ω < ω < ω⎨
⎪
⎪ ω < −ω⎩

S S S (9-26)

Finally, note that Sη η ωc s ( ) = 0  is equivalent to the narrow-band process η satisfying the

symmetry condition (9-21).  Since the cross spectrum is the Fourier transform of the cross-

correlation, this last statement implies that, for all t1 and t2 (not just t1 = t2), ηc(t1) and ηs(t2) are

uncorrelated if and only if (9-21) holds.  On Fig. 9-3, symmetry implies that the spectral

components labeled with U can be obtained from those labeled with L by a simple folding

operation.

System analysis is simplified greatly if the noise encountered has a symmetrical

Sη(ω)

-ωc ωc-2ωc 2ωc

a)

L LU U

Sη(ω-ωc)

-ωc ωc-2ωc 2ωc

1-Sgn(ω-ωc)

b)

L LU U

Sη(ω+ωc)

-ωc ωc-2ωc 2ωc

1+Sgn(ω+ωc)

c)

L LU U

Figure 9-3:  Symmetrical bandpass processes have ηc(t1) and ηs(t2)
uncorrelated for all t1 and t2.
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spectrum.  Under these conditions, the quadrature components are uncorrelated, and (9-20)

simplifies to

R ( ) R ( )cosη ητ τ ω τ= c c . (9-27)

Also, the spectrum Sη of the noise is obtained easily by scaling and translating Sηc ≡  F [R ]ηc

as shown by

S S Sη η ηω ω ω ω ω( ) [ ( ) ( )]= − + +1
2 c c c c . (9-28)

This result follows directly by taking the Fourier transform of (9-27).  Hence, when the process

is symmetrical, it is possible to express Sη  in terms of a simple translations of Sηc
(see the

comment after (9-20)).  Finally, for a symmetrical bandpass process, Equation (9-16) simplifies

to

S S Sη η ηω ω ω ω ω ω ω
c s

2( ) ( ) ( ),

,

= = + − ≤ ≤

=

c c c

otherwise0
. (9-29)

Example 9-1:  Figure 9-4 depicts a simple RLC bandpass filter that is driven by white Gaussian

noise with a double sided spectral density of N0/2 watts/Hz.  The spectral density of the output is

L C

R

+

-

η

+S(ω) = N0/2
watts/Hz
(WGN)

Figure 9-4:  A simple band-pass filter driven by white Gaussian
noise (WGN).
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given by

Sη ω ω α ω
α ω ω

( ) ( ) ( )
( )

= =
+ +

N H j N j
j

bp
c

0 2 0 0

0
2 2

2

2 2
2 , (9-30)

where α0 = R/2L, ωc = (ωn
2 - α0

2)1/2 and ωn = 1/(LC)1/2.  In this result, frequency can be

normalized, and (9-30) can be written as

Sη ω α ω
α ω

( ) ( )
( )

′ = ′ ′
′ + ′ +

N j
j

0 0

0
2

2

2
2

1
, (9-31)

where α0′ = α0/ωc and ω′ = ω/ωc.  Figure 9-5 illustrates a plot of the output spectrum for o′α = .5;

note that the output process is not symmetrical.  Figure 9-6 depicts the spectrum for o′α = .1 (a

much “sharper” filter than the o′α  = .5 case).  As the circuit Q becomes large (i.e., o′α  becomes

small), the filter approximates a symmetrical filter, and the output process approximates a

symmetrical bandpass process.

Envelope and Phase of Narrow-Band Noise

Zero-mean quadrature components ηc(t) and ηs(t) are jointly Gaussian, and they have the

-2 -1 0 1 2
ω′ (radians/second)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sη(ω)

Figure 9-5:  Output Spectrum for o′α  = .5

-2 -1 0 1 2
ω′ (radians/second)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sη(ω)

Figure 9-6: Output Spectrum for o′α  = .1
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same variance σ2 = R R Rc sη η η( ) ( ) ( )0 0 0= = .  Also, taken at the same time t, they are

independent.  Hence, taken at the same time, processes ηc(t) and ηs(t) are described by the joint

density

f c s
c s( , ) expη η

πσ
η η

σ
= − +L

N
MM

O
Q
PP

1
2 22

2 2

2 . (9-32)

We are guilty of a common abuse of notation.  Here, symbols ηc and ηs are used to denote

random processes, and sometimes they are used as algebraic variables, as in (9-32).  However,

always, it should be clear from context the intended use of ηc and ηs.

The narrow-band noise signal can be represented as

c c s c

1 c 1

(t) (t) cos t (t)sin t

(t) cos( t (t))

η = η ω − η ω

= Γ ω +ϕ
(9-33)

where

2 2
1 c s

1 s
1 1

c

(t) (t) (t)

(t)(t) Tan  , - < ,
(t)

−

Γ = η + η

⎛ ⎞η= π ≤ π⎜ ⎟η⎝ ⎠
ϕ ϕ

(9-34)

are the envelope and phase, respectively.  Note that (9-34) describe a transformation of ηc(t) and

ηs(t).  The inverse is given by

η

η

c

s

=

=

Γ

Γ

1

1

cos( )

sin( )

ϕ

ϕ

1

1

(9-35)
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The joint density of Γ1 and ϕ1 can be found by using standard techniques.  Since (9-35) is

the inverse of (9-33) and (9-34), we can write

c 1 1
s 1 1

c s
1 1 c s cos1 1

sin

( , )f ( , ) f ( , ) det
( , ) η =Γ

η =Γ

∂ η ηΓ = η η
∂ Γ ϕ

ϕ

ϕ
ϕ

(9-36)

c s 1 1 1
1 1 11 1

( , ) cos sin
sin     cos( , )

∂ η η −Γ⎡ ⎤= Γ⎢ ⎥⎣ ⎦∂ Γ
ϕ ϕ
ϕ ϕϕ

(again, the notation is abusive).  Finally, substitute (9-32) into (9-36) to obtain

2 2 21
1 1 1 1 12 2

21
12 2

1f ( , ) exp (sin cos )
2 2

1exp ,
2 2

Γ ⎡ ⎤Γ = − Γ +⎢ ⎥πσ σ⎣ ⎦

Γ ⎡ ⎤= − Γ⎢ ⎥πσ σ⎣ ⎦

ϕ ϕ ϕ

. (9-37)

for Γ1 ≥ 0 and -π < ϕ1 ≤ π.  Finally, note that (9-37) can be represented as

f f( , ) ( )f( )Γ Γ1 1ϕ ϕ1 1= , (9-38)

where

f U( ) exp ( )Γ Γ Γ Γ1
1
2 2 1

2
1

1
2

= −LNM
O
QPσ σ

(9-39)

describes a Rayleigh distributed envelope, and

f( ) ,ϕ ϕ1 1= ≤1
2π

π π  - < (9-40)
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describes a uniformly distributed phase.  Finally, note that the envelope and phase are

independent.  Figure 9-7 depicts a hypothetical sample function of narrow-band Gaussian noise.

Envelope and Phase of a Sinusoidal Signal Plus Noise - the Rice Density Function

Many communication problems involve deterministic signals embedded in random noise.

The simplest such combination of signal and noise is that of a constant frequency sinusoid added

to narrow-band Gaussian noise.  In the 1940s, Steven Rice analyzed this combination and

published his results in the paper Statistical Properties of a Sine-wave Plus Random Noise, Bell

System Technical Journal, 27, pp. 109-157, January 1948.  His work is outlined in this section.

Consider the sinusoid

0 c 0 0 0 c 0 0 cs(t) A cos( t ) A cos cos t A sin sin t= ω + θ = θ ω − θ ω , (9-41)

where A0, ωc, and θ0 are known constants.  To signal s(t) we add noise η(t) given by (9-1), a

zero-mean WSS band-pass process with power σ2 = E[η2] = E[ηc
2] = E[ηs

2].  This sum of signal

and noise can be written as

0 0 c c 0 0 s c

2 c 2

s(t) + (t) [A cos (t)]cos t [A sin (t)]sin t

(t)cos[ t ] ,

η = θ + η ω − θ + η ω

= Γ ω +ϕ
(9-42)

Fig. 9-7:  A hypothetical sample function of narrow-band Gaussian noise.  The envelope is
Rayleigh and the phase is uniform.
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where

2 2
2 0 0 c 0 0 s

1 0 0 s
2 2

0 0 c

(t) [A cos (t)] [A sin (t)]

A sin (t)(t) tan , ,
A cos (t)

−

Γ = θ + η + θ + η

⎡ ⎤θ + η= −π < ≤ π⎢ ⎥θ + η⎣ ⎦
ϕ ϕ

(9-43)

are the envelope and phase, respectively, of the signal+noise process.  Note that the quantity
2 2

0(A / 2  ) / σ  is the signal-to-noise ratio, a ratio of powers.

Equation (9-43) represents a transformation from the components ηc and ηs into the

envelope Γ2 and phase ϕ2.  The inverse of this transformation is given by

c 2 2 0 0

s 2 2 0 0

(t) (t)cos (t) A cos

(t) (t)sin (t) A sin .

η = Γ − θ

η = Γ − θ

ϕ

ϕ
(9-44)

Note that constants A0cosθ0 and A0sinθ0 only influence the mean of ηc and ηs.  In the remainder

of this section, we describe the statistical properties of envelope Γ2 and phase ϕ2.

At the same time t, processes ηc(t) and ηs(t) are statistically independent (however, for τ

≠ 0, ηc(t) and ηs(t+τ) may be dependent).  Hence, for ηc(t) and ηs(t) we can write the joint

density

f c s
c s( , ) exp[ ( ) / ]η η η η σ

πσ
= − +2 2 2

2
2

2
(9-45)

(we choose to abuse notation for our convenience: ηc and ηs are used to denote both random

processes and, as in (9-45), algebraic variables).

The joint density f(Γ2, ϕ2) can be found by transforming (9-45).  To accomplish this, the

Jacobian
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c s 2 2 2
2 2 22 2

( , ) cos sin
sin     cos( , )

∂ η η −Γ⎡ ⎤= Γ⎢ ⎥⎣ ⎦∂ Γ
ϕ ϕ
ϕ ϕϕ

(9-46)

can be used to write the joint density

c 2 2 0 0
s 2 2 0 0

c s
2 2 c s cos A cos2 2

sin A sin

( , )f ( , ) f ( , ) det
( , ) η =Γ − θ

η =Γ − θ

∂ η ηΓ = η η
∂ Γ ϕ

ϕ

ϕ
ϕ

(9-47)

{ }2
2 22 1

2 2 2 0 2 0 22 2
f ( , ) exp [ 2A cos( ) A ] U( )

2 σ

ΓΓ = − Γ − Γ θ + Γ
πσ

2 0ϕ ϕ − .

Now, the marginal density f(Γ2) can be found by integrating out the ϕ2 variable to obtain

{ }2

2
2 2 20

22 22 0 21 1
2 0 2 2 0 22 2 202

f ( ) f ( , ) d

Aexp [ A ] U( ) exp{ cos( )}d .

π

π
πσ

Γ = Γ

Γ Γ= − Γ + Γ θ
σ σ

∫

∫

ϕ ϕ

ϕ − ϕ

2

(9-48)

This result can be written by using the tabulated function

I d0
1

2 0
2

( ) exp{ cos( )}β β θ θπ
π

≡ z , (9-49)

the modified Bessel function of order zero.  Now, use definition (9-49) in (9-48) to write

f I A UA( ) exp [ ] ( )Γ Γ Γ ΓΓ
2

2
2 0

1
2 2

2
0

2
2

2 0
2 2= FH IK − +RST

UVWσ σ σ
, (9-50)

a result known as the Rice probability density.  As expected, θ0 does not enter into f(Γ2).

Equation (9-50) is an important result.  It is the density function that statistically
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describes the envelope Γ2 at time t; for various values of A0/σ, the function σf(Γ2) is plotted on

Figure 9-8 (the quantity 2 2
0(A / 2) / σ  is the signal-to-noise ratio).  For A0/σ = 0, the case of no

sinusoid, only noise, the density is Rayleigh.  For large A0/σ the density becomes Gaussian.  To

observe this asymptotic behavior, note that for large β the approximation

I e
0 2
( ) ,β

πβ
β

β
≈   >> 1, (9-51)

becomes valid.  Hence, for large Γ2A0/σ2 Equation (9-50) can be approximated by

f
A

A U( ) exp [ ] ( )Γ Γ Γ Γ2
2

0
2

1
2 2 0

2
2

2 2≈ − −RST
UVWπ σ σ

. (9-52)

0 1 2 3 4 5 6

Γ2/σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ 
f (

Γ 2)

A0/σ = 0

A0/σ = 1
A0/σ = 2

A0/σ = 3
A0/σ = 4

Figure 9-8:  Rice density function for sinusoid plus noise.  Plots
are given for several values of A0/σ.  Note that f is approximately
Rayleigh for small, positive A0/σ; density f is approximately
Gaussian for large A0/σ.
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For A0 >> σ, this function has a very sharp peak at Γ2 = A0, and it falls off rapidly from its peak

value.  Under these conditions, the approximation

f A( ) exp [ ]Γ Γ2 2
1

2 2 0
21

2
2≈ − −RST

UVWπσ σ
(9-53)

holds for values of Γ2 near A0 (i.e., Γ2 ≈ A0) where f(Γ2) is significant.  Hence, for large A0/σ,

envelope Γ2 is approximately Gaussian distributed.

The marginal density f(ϕ2) can be found by integrating Γ2 out of (9-47).  Before

integrating, complete the square in Γ2, and express (9-47) as

f A UA( , ) exp [ cos( )] exp sin ( ) ( )Γ Γ Γ Γ2
2

2
1

2 2 0
2

2
2 2

2
2

0
2

2
ϕ ϕ − ϕ −2 2 0 2 0= − − −RST

UVWπσ
θ θσ σ

{ } . (9-54)

Now, integrate Γ2 out of (9-54) to obtain

{ }
2 2 2 20

2A 22 120 2 0 2 0 22 0 222 0 22

f ( ) f ( , )d

exp exp [ A cos( )] d .sin ( )
2

∞

∞

σσ

= Γ Γ

Γ⎧ ⎫= − Γ − θ Γ− θ⎨ ⎬
⎩ ⎭ πσ

∫

∫

ϕ ϕ

ϕ −ϕ −

(9-55)

On the right-hand-side of (9-55), the integral can be expressed as the two integrals

Γ Γ Γ

Γ Γ Γ

Γ Γ

2
20

1
2 2 0

2
2

2 0
20

1
2 2 0

2
2

0
2

1
2 2 0

2
20

2

2
4

2

2

2

2

πσ
θ

θ
πσ

θ

θ
πσ

θ

σ

σ

σ

∞

∞

∞

z
z

z

− −

= − − −

+ − −

exp [ cos( )]

{ cos( )} exp [ cos( )]

cos( ) exp [ cos( )]

A d

A A d

A A d

ϕ −

ϕ − ϕ −

ϕ − ϕ −

2 0

2 0
2 0

2 0
2 0

{ }

{ }

{ }

(9-56)
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After a change of variable ν = [Γ2 - A0cos(ϕ2 - θ0)]2 , the first integral on the right-hand-side of

(9-56) can be expressed as

{ }
2 2A cos ( )00

22 0 2 0 1
2 0 2 0 2220 2

22 22

2 2A cos ( )2 00
22

2{ A cos( )}exp [ A cos( )] d
4

1 exp[ ]d
4

1 exp .
2

θ

∞

σ

∞ υ
σ

θ

σ

Γ − θ − Γ − θ Γ
πσ

= − ν
πσ

⎡ ⎤= −⎢ ⎥π ⎣ ⎦

∫

∫ ϕ −

ϕ −

ϕ − ϕ −

(9-57)

After a change of variable ν = [Γ2 - A0cos(ϕ2 - θ0)]/σ, the second integral on the right-hand-side

of (9-56) can be expressed as

{ }
{ }

{ }
0

0

21
2 0 2 0 220 2

21
2(A / )cos[ ]2 0

(A / )cos[ ] 22 0 1
2

A0
2 0

1 exp [ A cos( )] d
2

1 exp d
2

11 exp d
2

F( cos[ ]),

∞

σ

∞
− σ θ

− σ θ
−∞

σ

− Γ − θ Γ
πσ

= − ν ν
π

= − − ν ν
π

= θ

∫

∫

∫

ϕ −

ϕ −

ϕ −

ϕ −

(9-58)

where

F x d
x

( ) exp≡ −
−∞z1

2 2
2

π
ν ν

is the distribution function for a zero-mean, unit variance Gaussian random variable (the identity

F(-x) = 1 - F(x) was used to obtain (9-58)).
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Finally, we are in a position to write f(ϕ2), the density function for the instantaneous

phase.  This density can be written by using (9-57) and (9-58) in (9-55) to write

2A02 22

2 AA0 2 0 020 2 02 022

1f ( ) exp
2

A cos( ) exp F( cos[ ])sin ( )
2

σ

σσ

⎡ ⎤= −⎢ ⎥π ⎣ ⎦

θ ⎧ ⎫+ θ− θ⎨ ⎬
πσ ⎩ ⎭

ϕ

ϕ − ϕ −ϕ −

, (9-59)

the density function for the phase of a sinusoid embedded in narrow-band noise.  For various

values of SNR and for θ0 = 0, density f(ϕ2) is plotted on Fig. 9-9.  For a SNR of zero (i.e., A0 =

0), the phase is uniform.  As SNR A0
2/σ2 increases, the density becomes more sharply peaked (in

general, the density will peak at θ0, the phase of the sinusoid).  As SNR A0
2/σ2 approaches

infinity, the density of the phase approaches a delta function at θ0.

Phase Angle ϕ2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

f (
ϕ 2)

A0/σ = 0 A0/σ = 1

A0/σ = 2

A0/σ = 4

0 π/2-π/2-π π

Figure 9-9: Density function for phase of signal plus noise A0cos(ω0t+θ0) +
{ηc(t)cos(ω0t) - ηs(t)sin(ω0t)} for the case θ0 = 0.
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Shot Noise

Shot noise results from filtering a large number of independent and randomly-occuring-

in-time impulses.  For example, in a temperature-limited vacuum diode, independent electrons

reach the anode at independent times to produce a shot noise process in the diode output circuit.

A similar phenomenon occurs in diffusion-limited pn junctions.  To understand shot noise, you

must first understand Poisson point processes and Poisson impulses.

Recall the definition and properties of the Poissson point process that was discussed in

Chapters 2 and 7 (also, see Appendix 9-B).  The Poisson points occur at times ti with an average

density of λd points per unit length.  In an interval of length τ, the number of points is distributed

with a Poisson density with parameter λdτ.

Use this Poisson process to form a sequence of Poisson Impulses, a sequence of impulses

located at the Poisson points and expressed as

i
i

z(t) (t t )= δ −∑ , (9-60)

where the ti are the Poisson points.  Note that z(t) is a generalized random process; like the delta

function, it can only be characterized by its behavior under an integral sign.  When z(t) is

integrated, the result is the Poisson random process

t
0

(0, t), t 0

x(t) z( )d 0, t 0

- (0, t) t 0,

>⎧
⎪
⎪= τ τ = =⎨
⎪
⎪ <⎩

∫

n

n

(9-61)

where n(t1,t2) is the number of Poisson points in the interval (t1,t2).  Likewise, by passing the

Poisson process x(t) through a generalized differentiator (as illustrated by Fig. 9-10), it is

possible to obtain z(t).
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The mean of z(t) is simply the derivative of the mean value of x(t).  Since E[x(t)]=λdt, we

can write

z d
dE[z(t)] E[x(t)]
dt

η = = = λ . (9-62)

This formal result needs a physical interpretation.  One possible interpretation is to view ηz as

( )t / 21 1
z d dt tt / 2t t

limit  z( )d limit t  random fluctuation with increasing t 
−→∞ →∞

η = τ τ = λ + = λ∫ . (9-63)

For large t, the integral in (9-63) fluctuates around mean λdt with a variance of λdt (both the

mean and variance of the number of Poisson points in (-t/2, t/2) is λdt).  But, the integral is

multiplied by 1/t; the product has a mean of λd and a variance like λd/t.  Hence, as t becomes

large, the random temporal fluctuations become insignificant compared to λd, the infinite-time-

interval average ηz.

Important correlations involving z(t) can be calculated easily.  Because Rx(t1,t2) = 2
dλ t1t2

+ λdmin(t1,t2) (see Chapter 7), we obtain

2
xz 1 2 x 1 2 d 1 1 2

2

2
z 1 2 zx 1 2 d d 1 2

1

R (t , t ) R (t , t ) t U(t t )
t

R (t , t ) R (t , t ) (t t ) .
t

∂= = λ + λ −
∂

∂= = λ + λ δ −
∂

(9-64)

...... ......d/dt

x(t) z(t)

×× ××

Poisson ImpulsesPoisson Process

Figure 9-10:  Differentiate the Poisson Process to get Poisson impulses.
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The Fourier transform of Rz(τ) yields

2
z d d( ) 2 ( )ω = λ + π λ δ ωS , (9-65)

the power spectrum of the Poisson impulse process.

Let h(t) be a real-valued function of time and define

i
i

s(t) h(t t )= −∑ , (9-66)

a sum known as shot noise.  The basic idea here is illustrated by Fig. 9-11.  A sequence of δ

functions described by (9-60) (i.e., process z(t)) is input to system h(t) to form output shot noise

process s(t).  The idea is simple: process s(t) is the output of a system activated by a sequence of

impulses (that model electrons arriving at an anode, for example) that occur at the random

Poisson points ti.

Determined easily are the elementary properties of shot noise s(t).  Using the method

discussed in Chapter 7, we obtain the mean

[ ] [ ] [ ]s d d0
E s(t) E z(t) h(t) h(t) E z(t) h(t)dt H(0)

∞
η = = ∗ = ∗ = λ = λ∫ . (9-67)

Shot noise s(t) has the power spectrum

2 2 22 2 2
s z d d s d( ) H( ) ( ) 2 H (0) ( ) H( ) 2 ( ) H( )ω = ω ω = πλ δ ω + λ ω = πη δ ω + λ ωS S . (9-68)

Finally, the autocorrelation is

[ ] 2-1 2 2 j 2 2d
s s d d dR ( ) = ( ) H (0) H( ) e d H (0) ( )

2
∞ ωτ
−∞

λτ ω = λ + ω ω = λ + λ ρ τ
π ∫SF , (9-69)
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where

2 j1( ) H( ) e d h(t)h(t )dt
2

∞ ∞ωτ
−∞ −∞

ρ τ = ω ω = + τ
π ∫ ∫ . (9-70)

From (9-67) and (9-69), shot noise has a mean and variance of

s d

22 2 2 2 d
s d d d d

  = H(0) 

 = [ H (0) + (0)] - [ H(0)] (0) H( ) d  ,
2

∞
−∞

η λ

λσ λ λ ρ λ = λ ρ = ω ω
π ∫

(9-71)

respectively (Equation (9-71) is known as Campbell’s Theorem).

Example: Let h(t) = e-βtU(t) so that H(ω) = 1/(β + jω), t(t) e / 2−βρ = β  and

2
d d d

s s

2
2 d d d
s s 2 2

E[s(t)] R ( ) e
2

( ) 2 ( )
2

−β τ ⎡ ⎤λ λ λη = = τ = + ⎢ ⎥β β β⎣ ⎦

⎡ ⎤λ λ λσ = ω = π δ ω +⎢ ⎥β β β + ω⎣ ⎦
S

(9-72)

First-Order Density Function for Shot Noise

In general, the first-order density function fs(x;t) that describes shot noise s(t) cannot be

calculated easily.  Before tackling the difficult general case, we first consider a simpler special

ti-1 ti+1 ti+2ti ti-1 ti+1 ti+2ti

...... ......h(t)

z(t) s(t) = h(t)*z(t)

h(t)

Poisson Impulses Shot Noise

Figure 9-11:  Converting Poisson impulses z(t) into shot noise s(t)
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case where it is assumed that h(t) is of finite duration T.  That is, we assume initially that

h(t) 0, t < 0  and  t > T= . (9-73)

Because of (9-73), shot noise s at time t depends only on the Poisson impulses in the

interval (t - T, t).  Let random variable nT denote the number of Poisson impulses during (t - T,

t).  From Chapter 1, we know that

d
k

T d( T)[ k] e
k!

−λ λ= =TP n . (9-74)

Now, the Law of Total Probability (see Ch. 1 and Ch. 2 of these notes) can be applied to write

the first-order density function of the shot noise process s(t) as

d
k

T d
s s s

k 0 k 0

( T)f (x) f (x k) [ k] f (x k)e
k!

∞ ∞
−λ

= =

λ= = = = =⎮ ⎮∑ ∑T T Tn P n n (9-75)

(note that fs(x) is independent of absolute time t).  We must find fs(x⎮nT = k), the density of shot

noise s(t) conditioned on there being exactly k Poisson impulses in the interval (t - T, t).

From our previous study of Poisson points (see Chapters 1 and 7), we know that the

impulses are distributed randomly and independently on (t - T, t).  That is, the impulse locations

are k independent random variables, each of which is uniformly distributed on (t - T, t).

For the case k = 1, at any fixed time t, fs(x⎮nT = 1) is actually equal to the density g1(x)

of the random variable

1 1x (t) h(t t )≡ − , (9-76)
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where random variable t1 is uniformly distributed on (t - T, t).  That is, g1(x) ≡ fs(x⎮nT = 1)

describes the result that is obtained by transforming a uniform density (used to describe t1) by the

transformation h(t - t1).

Convince yourself that density g1(x) = fs(x⎮nT = 1) does not depend on time.  Note that

for any given time t, random variable t1 is uniform on (t-T, t), and x1(t) ≡ h(t-t1) is assigned

values in the set {h(α) : 0 < α < T}, the assignment not depending on t.  Hence, density g1(x) ≡

fs(x⎮nT = 1) does not depend on t.

The density fs(x⎮nT = 2) can be found in a similar manner.  Let t1 and t2 denote

independent random variables, each of which is uniformly distributed on (t - T, t), and define

2 1 2x (t) h(t t ) h(t t )≡ − + − . (9-77)

At fixed time t, the random variable x2(t) is described by the density fs(x⎮nT = 2) = g1∗g1 (i.e.,

the convolution of g1 with itself) since h(t - t1) and h(t - t2) are independent and identically

distributed with density g1.

The general case fs(x⎮nT = k) is similar.  At fixed time t, the density that describes

k 1 2 kx (t) h(t t ) h(t t )   h(t t )≡ − + − + + −" (9-78)

is

k s 1 1 1
k convolutions

g (x) f (x = k) = g (x) g (x)   g (x)≡ ⎮ ∗ ∗ ∗"�����	����
Tn , (9-79)

the density g1 convolved with itself k times.

The desired density can be expressed in terms of results given above.  Simply substitute

(9-79) into (9-75) and obtain
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d
k

T d
s k

k 0

( T)f (x) e g (x)
k!

∞
−λ

=

λ= ∑ . (9-80)

When nT = 0, there are no Poisson points in (t - T, t), and we have

0 sg (x) f (x = 0) = (x)≡ ⎮ δTn (9-81)

since the output is zero.  Convergence is fast, and (9-80) is useful for computing the density fs

when λdT is small (the case for low density shot noise), say on the order of 1, so that, on the

average, there are only a few Poisson impulses in the interval (t - T, t).  For the case of low

density shot noise, (9-80) cannot (in general) be approximated by a Gaussian density.

fs(x) For An Infinite Duration h(t)

The first-order density function fs(x) is much more difficult to calculate for the general

case where h(t) is of infinite duration (not subject to the restriction (9-73)).  We show that shot

noise is approximately Gaussian distributed when λd is large compared to the time interval over

which h(t) is significant (so that, on the average, many Poisson impulses are filtered to form s(t)).

To establish this fact, consider first a finite duration interval (-T/2, T/2), and let random

variable nT, described by (9-74), denote the number of Poisson impulses that are contained in the

interval.  Also, define the time-limited shot noise

T k
k 1

s (t) h(t t ), T / 2 t T / 2
=

≡ − − < <∑
Tn

, (9-82)

where the identically distributed and independent random variables ti denote the times at which

the Poisson impulses occur in the interval (each ti is uniformly distributed on the interval).  Shot

noise s(t) is the limit of sT(t) as T approaches infinity.
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In our analysis of s(t), we first consider the characteristic function

Tj sj s
s

T
( ) E e limit E e ωω

→∞
⎡ ⎤⎡ ⎤Φ ω = =⎣ ⎦ ⎣ ⎦ . (9-83)

Now, write the characteristic function of sT as

[ ]T Tj s j s

k 0
E e E e  k k

∞
ω ω

=

⎡ ⎤ ⎡ ⎤= ⎮ = =⎣ ⎦ ⎣ ⎦∑ T Tn P n , (9-84)

where P[nT = k] is given by (9-74).  In the interval (-T/2, T/2), the locations of the nT Poisson

impulses are identically and independently distributed.  Hence, the terms h(t - ti) in sT(t) (see

(9-82)) are independent so that

( )T T
kj s j sE e  k E e  1ω ω⎡ ⎤ ⎡ ⎤⎮ = = ⎮ =⎣ ⎦ ⎣ ⎦T Tn n , (9-85)

where

T
T / 2j s j h(t x)
T / 2

1E e  1 e dx, T / 2 t T / 2
T

ω ω −
−

⎡ ⎤⎮ = = − < <⎣ ⎦ ∫Tn , (9-86)

since each ti is uniformly distributed on (-T/2, T/2).  Finally, by using (9-83) through (9-86), we

can write
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[ ]T T

d

d

j s j s
s

T T k 0

kkT / 2 Tj h(t x) d
T / 2T k 0

kT / 2 j h(t x)
dT T / 2

T k 0

( ) limit E e limit E e  k k

1 ( T)limit e dx e
T k!

e dx
limit    e .

k!

∞
ω ω

→∞ →∞ =

∞
−λω −

−→∞ =

ω −∞
−λ −

→∞ =

⎡ ⎤ ⎡ ⎤Φ ω = = ⎮ = =⎣ ⎦ ⎣ ⎦

λ⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞λ⎜ ⎟
⎝ ⎠=

∑

∑ ∫

∫∑

T Tn P n

(9-87)

Recalling the Taylor series of the exponential function, we can write (9-87) as

( )T / 2 j h(t x) j h(t x)
s d d dT / 2T
( ) limit exp{ T}exp e dx exp e 1 dx

∞ω − ω −
− −∞→∞

⎛ ⎞ ⎡ ⎤Φ ω = −λ λ = λ −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ , (9-88)

a general formula for the characteristic function of the shot noise process.

In general, Equation (9-88) is impossible to evaluate in closed form.  However, this

formula can be used to show that shot noise is approximately Gaussian distributed when λd is

large compared to the time constants in h(t) (i.e., compared to the time duration where h(t) is

significant).  First, this task will be made simpler if we standardize s(t) to

d

d

s(t)- H(0)(t) λ≡
λ

s , (9-89)

so that

[ ]E 0

R ( ) ( ) h(t)h(t )dt
∞
−∞

=

τ = ρ τ = + τ∫s

s

. (9-90)
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(see (9-67) and (9-69)).  The characteristic functions of s and s are related by

j d
d s d

d

s - H(0)( ) E e E exp j exp j H(0) ( )ω ⎡ ⎤⎡ ⎤λ⎡ ⎤ ⎡ ⎤Φ ω = = ω = − ω λ Φ ω λ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ λ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

s
s . (9-91)

Use (9-88) in (9-91) to write

d d

j j
d( ) exp exp h(t x) 1 h(t x) dx

∞ ω ω
−∞ λ λ

⎡ ⎤⎧ ⎫⎡ ⎤Φ ω = λ − − − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭⎣ ⎦
∫s . (9-92)

Now, in the integrand, expand the exponential in a power series, and cancel out the zero and

first-order terms to obtain

k k
k k

( j ) ( j )
d dk! k!

d dk 2 k 2

h(t x) h(x)( ) exp dx exp dx
∞ ∞∞ ∞ω ω

−∞ −∞
= =

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫−⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥Φ ω = λ = λ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥λ λ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫s . (9-93)

Finally, assume that λd is large compared to the time duration during which h(t) is significant.

For example, this will be the case if the decay of h(t) (or the envelope of h(t)) is faster than a

function of the form mt /
mc e U(t)− τ , and λd is large compared to the time constant τm.  This

insures that, on the average and at any give time, shot noise s(t) results from the filtering of a

large number of random Poisson impulses.  For this case, only the first term in the sum is

significant; for large λd, Equation (9-93) can be approximated as

2( j ) 2 2 21
2 2( ) exp h (x)dx exp

∞ω
−∞

⎡ ⎤ ⎡ ⎤Φ ω ≈ = − σ ω⎢ ⎥ ⎣ ⎦⎣ ⎦∫s s , (9-94)

where
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2 R (0)σ =s s (9-95)

is the variance of standardized shot noise s(t) (see (9-90)).  Note that Equation (9-94) is the

characteristic function of a zero-mean, Gaussian random variable with variance (9-95).  Hence,

shot noise is approximately Gaussian distributed when λd is large compared to the time interval

over which h(t) is significant (so that, on the average, a large number of Poisson impulses are

filtered to form s(t)).

Example: Temperature-Limited Vacuum Diode

In classical communications system theory, a temperature-limited vacuum diode is the

quintessential example of a shot noise generator (the phenomenon was first predicted and

analyzed theoretically by Schottky in his 1918 paper: Theory of Shot Effect, Ann. Phys., Vol 57,

Dec. 1918, pp. 541-568).  In fact, over the years, noise generators (used for testing/aligning

communication receivers, low noise preamplifiers, etc.) based on vacuum diodes (i.e., Sylvania

5722 special purpose noise generator diode) have been offered on a commercial basis.

Vacuum noise generating diodes are operated in a temperature-limited, or saturated,

mode.  Essentially, all of the available electrons are collected by the plate (few return to the

cathode) so that increasing plate voltage does not increase plate current (i.e., the tube is

saturated).  The only way to increase plate current is to increase filament/cathode temperature.

Under this condition, between electrons, space charge effects can be negligible so that individual

electrons are, more or less, independent of each other.

The basic circuit is illustrated by Figure 9-12.  In a random manner, electrons are emitted

by the cathode, and they flow a distance d to the plate to form the current i(t).  If emitted at t = 0,

an independent electron contributes a current h(t), and the aggregate plate current is given by

k
k

i(t) h(t t )= −∑ , (9-96)
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where tk are the Poisson-distributed independent times at which electrons are emitted by the

cathode (see Equation (9-66)).  In what follows, we approximate h(t).

As discussed above, space charge effects are negligible and the electrons are

independent.  Since there is no space charge between the cathode and plate, the potential

distribution V in this region satisfies Laplace’s equation

2

2 0
x

∂ =
∂

V . (9-97)

The potential must satisfy the boundary conditions V(0) = 0 and V(d) = Vp.  Hence, simple

integration yields

p= x , 0 x≤ ≤
V

V  d
d

. (9-98)

As an electron flows from the cathode to the plate, its velocity and energy increase.  At

point x between the cathode and plate, the energy increase is given by

p
nE (x) (x) = x=

V
eV e

d
, (9-99)

where e is the basic electronic charge.

RL

+-+-

i(t)

Vp
Plate

Vf
Filament

d

Figure 9-12:  Temperature-limited vacuum
diode used as a shot noise generator.
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Power is the rate at which energy changes.  Hence, the instantaneous power flowing from

the battery into the tube is

pn n
p

dE dE dx dx h
dt dx dt dt

= = =
V

e V
d

, (9-100)

where h(t) is current due to the flow of a single electron (note that d -1dx/dt has units of sec-1 so

that (e/d ) dx/dt has units of charge/sec, or current).  Equation (9-100) can be solved for current to

obtain

x
dh v
dt

= =e x e
d d

, (9-101)

where vx is the instantaneous velocity of the electron.

Electron velocity can be found by applying Newton’s laws.  The force on an electron is

just e(Vp/d), the product of electronic charge and electric field strength.  Since force is equal to

the product of electron mass m and acceleration ax, we have

xa = pVe
m d

. (9-102)

As it is emitted by the cathode, an electron has an initial velocity that is Maxwellian distributed.

However, to simplify this example we will assume that the initial velocity is zero.  With this

assumption, electron velocity can be obtained by integrating (9-102) to obtain

xv = tpVe
m d

. (9-103)

Over transition time tT the average velocity is
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x x0
1v v dt =

2
= =∫ Tt p

T
T T

Ve dt
t m d t

. (9-104)

Finally, combine these last two equations to obtain

x 2
2v = t, 0 t

⎛ ⎞
≤ ≤⎜ ⎟⎜ ⎟

⎝ ⎠T
T

d t
t

. (9-105)

With the aid of this last relationship, we can determine current as a function of time.

Simply combine (9-101) and (9-105) to obtain

2
2h(t) t, 0 t

⎛ ⎞
= ≤ ≤⎜ ⎟⎜ ⎟
⎝ ⎠

T
T

e t
t

, (9-106)

the current pulse generated by a single electron as it travels from the cathode to the plate.  This

current pulse is depicted by Figure 9-13.

The bandwidth of shot noise s(t) is of interest.  For example, we may use the noise

generator to make relative measurements on a communication receiver, and we may require the

noise spectrum to be “flat” (or “white”) over the receiver bandwidth (the noise spectrum

amplitude is not important since we are making relative measurements).  To a certain “flatness”,

t

h(t)

tT

2e/tT

Figure 9-13: Current due to a single electron emitted by
the cathode at t = 0.
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we can compute and examine the power spectrum of standardized s(t) described by (9-89).  As

given by (9-90), the autocorrelation of s(t) is

( ) ( ) ( )2 22

0

4R ( ) 2 t(t + )dt = 1 1 , 0
3 2

R ( ), 0

0, otherwise

−τ τ ττ = τ − + ≤ τ ≤

= −τ − ≤ τ ≤

=

∫
Tt

s T
T T T T

s T

e e t
t t t t

t . (9-107)

The power spectrum of s(t) is the Fourier transform of (9-107), a result given by

( )2
s 40

4( ) 2 R ( ) cos( )d ( ) 2(1 cos sin )
( )

∞
ω = τ ωτ τ = ω + − ω − ω ω

ω∫ T T T T
T

S t t t t
t

. (9-108)

Plots of the autocorrelation and relative power spectrum (plotted in dB relative to peak power at

ω = 0) are given by Figures 9-14 and 9-15, respectively.

To within 3dB, the power spectrum is “flat” from DC to a little over ω = π/tT.  For the

Sylvania 5722 noise generator diode, the cathode-to-plate spacing is .0375 inches and the transit

time is about 3×10-10 seconds.  For this diode, the 3dB cutoff would be about 1/2tT = 1600Mhz.

In practical application, where electrode/circuit stray capacitance/inductance limits frequency

Rs(τ)

τ

24
3 T

e
t

tT-tT

Figure 9-14:  Autocorrelation function of
normalized shot noise process.
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Figure 9-15: Relative power spectrum of nor-
malized shot noise process.
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range, the Sylvania 5722 has been used in commercial noise generators operating at over

400Mhz.    


