# 1.2.3 FREQUENCY RESPONSE

Have seen that the impulse signal provides a simple way to characterize the response of an LTI system to any input.

Sinusoids play a similar role.

Consider 
$$x(n) = e^{j\omega n}$$
,  $\omega$  - fixed

Denote response by  $y_{\omega}(n)$ 

$$e^{j\omega n}$$
  $\rightarrow$  System  $\rightarrow$   $y_{\omega}(n)$ 

Now consider

$$e^{j\omega(n+m)}$$
  $\rightarrow$  System  $\rightarrow$   $y_{\omega}(n+m)$  by time-invariance

But also

$$e^{j\omega m} e^{j\omega n}$$
 System  $\rightarrow$   $e^{j\omega m} y_{\omega}(n)$  by homogeneity

Since  $e^{j\omega m} e^{j\omega n} = e^{j\omega(n+m)}$ ,

$$y_{\omega}(n+m) = y_{\omega}(n) e^{j\omega m}$$

Let n = 0,

$$y_{\omega}(m) = y_{\omega}(0) e^{j\omega m}$$
 for all  $m$ 

For a system which is homogeneous and time-invariant, the response to a complex exponential input  $x(n) = e^{j\omega n}$  is  $y(n) = y_{\omega}(0)x(n)$ , a frequency-dependent constant times the input x(n).

Thus complex exponential signals are eigenfunctions of homogeneous, time-invariant systems.

### Comments

1. We refer to the constant of proportionality as the frequency response of the system and denote it by

$$H(e^{j\omega}) = y_{\omega}(0)$$

- 2. We write it as a function of  $e^{j\omega}$  rather than  $\omega$  for two reasons:
  - a. digital frequencies are only unique modulo  $2\pi$ .
  - b. because of the relation between frequency response and the Z transform
- 3. Note that we did not use superposition. We will need it later when we express the response to arbitrary signals in terms of the frequency response.

# Magnitude and Phase of Frequency Response

In general,  $H(e^{j\omega})$  is complex-valued,

*i.e.* 
$$H(e^{j\omega}) = A(\omega)e^{j\theta(\omega)}$$

Thus for  $x(n) = e^{j\omega n}$ 

$$y(n) = A(\omega) \; e^{j[\omega n \; + \; \underline{/\theta(\omega)}]}$$

Suppose response to any real-valued input x(n) is real-valued.

Let 
$$x(n) = cos(\omega n) = \frac{1}{2} \left[ e^{j\omega n} + e^{-j\omega n} \right]$$

Assuming superposition holds,

$$y(n) = \frac{1}{2} \left\{ H(e^{j\omega}) e^{j\omega n} + H(e^{-j\omega}) e^{-j\omega n} \right\}$$

$$[y(n)]^* = \frac{1}{2} \left\{ \left[ H(e^{j\omega}) \right]^* e^{-j\omega n} + \left[ H(e^{-j\omega}) \right]^* e^{j\omega n} \right\}$$

$$y(n) = [y(n)]^* \Leftrightarrow H(e^{-j\omega}) = [H(e^{j\omega})]^*$$

Expressed in polar coordinates

$$A(-\omega) e^{j/\theta(-\omega)} = A(\omega) e^{-j/\theta(\omega)}$$

$$A(-\omega) = A(\omega)$$
 even  $\theta(-\omega) = -\theta(\omega)$  odd

### Examples

1. 
$$y(n) = \frac{1}{2} [x(n) + x(n-1)]$$

Let 
$$x(n) = e^{j\omega n}$$

$$y(n) = \frac{1}{2} \left[ e^{j\omega n} + e^{j\omega(n-1)} \right]$$
$$= \frac{1}{2} \left[ 1 + e^{-j\omega} \right] e^{j\omega n}$$

$$\therefore H(e^{j\omega}) = \frac{1}{2} [1 + e^{-j\omega}]$$

Factor out the half-angle:

$$\begin{aligned} \mathrm{H}(\mathrm{e}^{\mathrm{j}\omega}) &= \frac{1}{2} \; \mathrm{e}^{-\mathrm{j}\omega/2} \left[ \mathrm{e}^{\mathrm{j}\omega/2} + \mathrm{e}^{-\mathrm{j}\omega/2} \right] \\ &= \mathrm{e}^{-\mathrm{j}\omega/2} \; \cos(\omega/2) \\ |\, \mathrm{H}(\mathrm{e}^{\mathrm{j}\omega}) \,| \; = \; |\, \mathrm{e}^{-\mathrm{j}\omega/2} \,| \; |\, \cos(\omega/2) \,| \\ &= |\, \cos(\omega/2) \,| \\ \\ \frac{/\mathrm{H}(\mathrm{e}^{\mathrm{j}\omega})}{=} &= \frac{/\mathrm{e}^{-\mathrm{j}\omega/2} + /\cos(\omega/2)}{-\omega/2 \,\pm \,\pi, \; \cos(\omega/2) < 0} \end{aligned}$$





Note: even symmetry of  $|H(e^{j\omega})|$  odd symmetry of  $\underline{/H(e^{j\omega})}$  periodicity of  $H(e^{j\omega})$  with period  $2\pi$  low pass characteristic

2. 
$$y(n) = \frac{1}{2} [x(n) - x(n-2)]$$

Let 
$$x(n) = e^{j\omega n}$$

$$y(n) = \frac{1}{2} \left[ e^{j\omega n} - e^{j\omega(n-2)} \right]$$
$$= \frac{1}{2} \left[ 1 - e^{-j\omega 2} \right] e^{j\omega n}$$

$$\therefore H(e^{j\omega}) = \frac{1}{2} \left[ 1 - e^{-j\omega 2} \right]$$
$$= je^{-j\omega} \left[ \frac{1}{j2} \left( e^{j\omega} - e^{-j\omega} \right) \right]$$

$$\begin{aligned} &\mathrm{H}(\mathrm{e}^{\mathrm{j}\omega}) = \mathrm{j}\mathrm{e}^{-\mathrm{j}\omega}\mathrm{sin}(\omega) \\ &|\mathrm{H}(\mathrm{e}^{\mathrm{j}\omega})| = |\mathrm{j}| |\mathrm{e}^{-\mathrm{j}\omega}| |\mathrm{sin}(\omega)| \\ &= |\mathrm{sin}(\omega)| \\ \\ &\underline{/\mathrm{H}(\mathrm{e}^{\mathrm{j}\omega})} = \underline{/\mathrm{j}} + \underline{/\mathrm{e}^{-\mathrm{j}\omega}} + \underline{/\mathrm{sin}(\omega)} \\ &= \begin{cases} \pi/2 - \omega, & \sin(\omega) \geq 0 \\ \pi/2 - \omega \pm \pi, & \sin(\omega) < 0 \end{cases} \end{aligned}$$





This filter has a bandpass characteristic.

Consider 
$$x(n) = \cos(\omega n)$$

a. 
$$\omega = 0$$



b. 
$$\omega = \pi/2$$

| $\frac{x(n)}{y(n)}$ | ••• | 1 | 0 | -1 | 0 | 1 | 0 | -1 | 0 | ••• |
|---------------------|-----|---|---|----|---|---|---|----|---|-----|
| y(n)                | ••• | 1 | 0 | -1 | 0 | 1 | 0 | -1 | 0 | ••• |
| $\sum_{n=0}$        |     |   |   |    |   |   |   |    |   |     |

c. 
$$\omega = \pi$$

3. 
$$y(n) = x(n) - x(n-1) - y(n-1)$$

Let  $x(n) = e^{j\omega n}$ , how do we find y(n)?

Assume desired form of output,

i.e. 
$$y(n) = H(e^{j\omega}) e^{j\omega n}$$

$$\mathrm{H}(\mathrm{e}^{\mathrm{j}\omega})\,\mathrm{e}^{\mathrm{j}\omega\mathrm{n}} = \mathrm{e}^{\mathrm{j}\omega\mathrm{n}}\,-\,\mathrm{e}^{\mathrm{j}\omega(\mathrm{n}-1)}\,-\,\mathrm{H}(\mathrm{e}^{\mathrm{j}\omega})\,\,\mathrm{e}^{\mathrm{j}\omega(\mathrm{n}-1)}$$

$$H(e^{j\omega}) \left[1 + e^{-j\omega}\right] e^{j\omega n} = \left[1 - e^{-j\omega}\right] e^{j\omega n}$$

$$\begin{split} \mathrm{H}(\mathrm{e}^{\mathrm{j}\omega}) &= \frac{[1-\mathrm{e}^{-\mathrm{j}\omega}]}{[1+\mathrm{e}^{-\mathrm{j}\omega}]} \\ &= \frac{\mathrm{j}\mathrm{e}^{-\mathrm{j}\omega/2} \left[\frac{1}{\mathrm{j}2} \left(\mathrm{e}^{\mathrm{j}\omega/2} - \mathrm{e}^{-\mathrm{j}\omega/2}\right)\right]}{\mathrm{e}^{-\mathrm{j}\omega/2} \left[\frac{1}{2} \left(\mathrm{e}^{\mathrm{j}\omega/2} + \mathrm{e}^{\mathrm{j}\omega/2}\right)\right]} \\ &= \mathrm{j} \ \frac{\sin(\omega/2)}{\cos(\omega/2)} \\ &= \mathrm{j} \ \tan(\omega/2) \end{split}$$

$$|H(e^{j\omega})| = |\tan(\omega/2)|$$

$$\underline{/\mathrm{H}(\mathrm{e}^{\mathrm{j}\omega})} = \begin{cases} \pi/2, & \tan(\omega/2) \geq 0 \\ \pi/2 \, \pm \, \pi, & \tan(\omega/2) < 0 \end{cases}$$





# Comments

- 1. What happens at  $\omega = \pi/2$ ?
- 2. Factoring out the half angle is possible only for a relatively restricted class of filters.