1.3.2 CONTINUOUS-TIME FOURIER
TRANSFORM (CTFT)

Spectral representation for aperiodic CT signals

Consider a fixed signal x(t) and let
xp(t) = repr [x(t)]
A x(t)
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What happens to Fourier series as T

increases?
T=T/2
A Xp(t)
} } >
-T>7T=< T t
1=T/4
A Xp(t)
. N A
-T > T |< T t
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Fourier Coefficients

/2 |
Xi = [ x(t) e 32U Tqg
~T/2

Let T—oo
k/T—f

X —X(f)

X(f) = Ofo x(t)e—izﬂftdt
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Fourier Series Expansion

Xp(t) _ % Xy ei2mkt/T

k=—0c0

Let T—0

xp (8)—x(t)

k/T—f Xpx—X(f)

1 oo
— — d
T > J df
=—00 —00
oo
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Fourier Transform Pair

Forward transform
m -
X(f) = [ x(t) e 92™dt (1)
—CO

Inverse transform
(0.9)

x(t) = [ X(f) e2™tdf (2)

—00
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Sufficient Conditions for Existence of CTFT

1. x(t) has finite energy
0.0)

[ 1x(t)]?dt < oo
—00

2. x(t) is absolutely integrable

Ofo | x(t) | dt < oo

—C0

and it satisfies the Dirichlet conditions
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Transform Relations

1. linearity

CTFT
a1x1 (t) + agxa(t) «— arX;(f) + agXs(f)

2. scaling and shifting

t—t CTFT .
X[ 0 ] — |a| X(af) e j2mtto
a

3. modulation

. CTFT
x(t) 2™ X(F — £o)
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4. reciprocity

CTFT
X(t) x(—f)

5. Parseval’s relation

T o1x®)[2as= [ ()2t

6. Initial value
O

| x(t)dt = X(0)

—o0
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Comments

. Reflection is a special case of scaling and shift-

ing with a = — 1 and ty =0, .e.
CTFT
x(—t) <« X(—f)

. The scaling relation exhibits reciprocal spread-
ing.

. Uniqueness of the CTFT follows from Parseval’s
relation.
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CTFT for Real Signals

*

If x(t) is real, X(f) = [X(—f)]

S 1X(®)| = |X(—f)]| and /X() = — /X(=)

In this case, the inverse transform may be written
as

oo

x(t) =2 [ | X(f)| cos[2xft + /X(f)]df
0

Additional symmetry relations:

x(t) is real and even <> X(f) is real and even

x(t) is real and odd < X(f) is imaginary and odd
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Important Transform Pairs

CTFT
1. rect(t) <> sinc(f)
1
lﬁ CTFT
> - N >
12712t 30 -1 1 3 f
CTFT
2. 6(t) « 1 (by sifting property)
1 1*
CTFT
<>
l —>> -
t f

Proof:

F{5(t)} = Ofo 5(t) e 92t dt = 1
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CTFT
3. 1 « §f) (by reciprocity)

A

1 |

CTFT 1
>

— —>>

t I

4 ot .
. € — 6(f —fy) (by modulation property)

CTFT 1
5. cos(2nfyt) « —5[5(f — fo) + o(f + fo)]

A

AN vy

[ |
-1/fo _1_r\/1/f0t o fo T
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Generalized Fourier Transform

Note that 6(t) is absolutely integrable but not
square integrable.

t

A

1
A

Consider 6a(t) = — rect

0.0}

| leat)|dt =1

—0

00 ) 1
SA(t) | 2dt = —

[ léat)] X

—00

oo
lim [ |68a(t)]%dt = oo

A—0 00
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The function x(t) = 1 is neither absolutely nor

square integrable; and the integral

w -
f 1 e 327t g4

—C0

1s undefined.
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Even when neither condition for existence of the
CTFT is satisfied, we may still be able to define a
Fourier transform through a limiting process.

Let x,(t), n = 0,1,2,... denote a sequence of func-

tions each of which has a valid CTFT X (f)

Suppose that lim x,(t) = x(t), a function that

n—~oo

does not have a valid transform
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If X(f) = lim X,(f) exists, we call it the general-

n—oo
ized Fourier transform of x(t) z.e.

CTFT
xo(t) < Xolf)

CTFT
x((t) <« Xq(f)

CTFT
xo(t) < Xaff)

GCTFT
X(t) > X(f)
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Example

Let x,(t) = rect(t/n)

X, (f) = n sinc(nf)  (by scaling)

lim x,(t) =1
n—»00 | 1ﬁ(n(f)
What is lim X, (f)? Pat —~—>
n—00 3 Al 3m f

X, (f)—0, f+0

X (0)— o
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(6. ¢)
What is [ X, (f)df?

—00
By the initial value relation
0.}

[ Xa(B)df = x,(0) =1

—CO

lim X, (f) = §(f)

n—~0eo

and we have

GCTFT
1 &)
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Efficient Calculation of Fourier Transforms

Suppose we wish to determine the CTFT of the fol-
lowing signal
A X(t)

2 11

>
t

2

1

Brute force approach:

1. evaluate transform integral directly

O . 2 .
X(f) = [ (=1) e 3% 4 [ (1) e 2™t
—2 0

2. collect terms, simplify, etc...
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Faster approach:

1. write x(t) in terms of functions whose
transforms are known

A X(t)
) 1
: : >
1 2 t
t+1 t—1
x(t) = — rect ; + rect 5 ]

2. Use transform relations to determine X(f)

X(f) = 2 sinc(2f) [e_ﬂﬂf — ejzﬂf]

169



X(f) = — j4 sinc(2f) sin(27f)

sinc(2f)
% AN —>
2 -1 | ™~ 2 1
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Comments
1. A, =0 and X(0)=0

2. x(t) is real and odd and X(f) is imaginary and
odd
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CTFT and CT LTI Systems

The key factor that made it possible to express the
response y(t) of an LTI system to an arbitrary
input x(t) in terms of the impulse response h(t) was
the fact that we could write x(t) as a superposition
of impulses §(t).

We can similarly express x(t) as a superposition of
complex exponential signals:

x(t) = Ofo X(f) &2t df

—Q0
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Let ﬁ(f) denote the frequency response of the sys-
tem, 7.e. for a fixed frequency f

oi27ft s

System

then by homOgeneity

> ﬁ(f) ej2ﬂft

X(f) ej2ﬂft >

System

> H()X(f) &2
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and by superposition

0.0) CONS .
[ X(f) 2™ dt >{System > [ H(f)X(f) ™" dt

Thus, the response to x(t) is

y(t) = [ HEX() e?™tdt
But also,
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Y(f) = H(f) X(f) (1)
We also know that
y(t) = Ofo h(t — 7)x(r)dr

—Cc0

What is relation between h(t) and H(f)?

Let x(t) §(t) = y(t)
then X(f) = 1 and Y(f)

h(t)
H(f)

From Eq. (1), conclude that H(f) = H(f)
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Since the frequency response is the CTFT of the
impulse response, we will drop the tilde.

Summarizing, we have two equivalent characteriza-
tions for CT LTI systems

y(t) = Ofo h(t — 7) x(7)dr

—0o0

Y(f) = H(f) X(6)
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Convolution Theorem

Since x(t) and h(t) are arbitrary signals, we also
have the following Fourier transform relation

CT
[a() st — )dr o X (1) Xa(f

or

CTFT
x1(t) * xa(t) < Xy(f) Xo(f)
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Product Theorem

By reciprocity, we also have the following result

CTFT
x1(t) xo(t) <« Xy(f) * Xo(f)

This can be very useful for calculating transforms
of certain functions.
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Example

1
— 1 27t t] < 1/2
X(t):* 2 [ +COS( T )] Y/ I I /
0 ,lt] >1/2
' ) x(t)
Find X(f) L
L >
- -1/2 12 t

x(t) = _3_ 1 + cos(2nt)] rect(t)

S X(f) = ?12-{5(f) + —3—[6(1’ — 1) + §(f + 1)]} s sinc(f)



Since convolution obeys linearity, we can write this
as

X(f) = %— {5(f) % sinc(f) + %—[6(f — 1) % sinc(f)

+ 6(f + 1) * sinc(f)]}

All three convolutions here are of the same general
form.
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Identity

For any signal w(t),
w(t)  §(t — tg) = w(t — tg)
Proof:

w(t) * 6(t — tg) = [ w(r) 6(t — 7 — to)dr

= w(t — tg) (by sifting property)
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Using the identity,

X(f) = % {6(f) % sinc(f) + é—[é(f — 1) * sinc(f)

+6(f + 1) % sinc(f)]}

— %{sinc(f) + -;— [sinc(f — 1) + sine(f + 1)]}
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Fourier Transform of Periodic Signals

We previously developed the Fourier series as a
spectral representation for periodic CT signals.

Such signals are neither square integrable nor
absolutely integrable, and hence do not satisfy
the conditions for existence of the CTFT.

However, by applying the concept of the gen-
eralized Fourier transform, we can obtain a
Fourier transform for periodic signals.

This allows us to treat the spectral analysis of
all CT signals within a single framework.
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e We can also obtain the same result directly
from the Fourier series.

Let x¢(t) denote one period of a signal that is
periodic with period T, e  xy(t) =0,
|t] > T/2.

Define x(t) = rep[xq(t)]

The Fourier series representation for x(t) is

1 .
x(t) = = 3 X 7/
k

184



Taking the CTFT directly, we obtain

ej27rkt/TW

X(f) = Z Xk

L

,_%L

/
N

\

(by linearity)

k

/

»a|+—* r—3|v~

> Xy o(f — k/T)
k
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Also
T/2 .
Xk = [ x(t) e 12mkt/T g
~T/2
o0 o
f %o (b) e—i27kt /T 34

—C0

Xo(k/T)

Xo(k/T) 6(f — k/T)

Jal
[
~ [

T
1 1
T comb T 1Xo(f)]
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Dropping the subscript 0, we may state this result
in the form of a transform relation:

CTFT 1

reprfx(t)] < - combo [X(T)

For our derivation, we required that x(t) =0,
|t] > T/2. However, when the generalized
transform is used to derive the result, this restric-
tion is not needed.
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Example

AX(1) f*x\(ﬂ
> N >
T 1 t -3?\4/1 i~ 3p f
lcomb [X(1)]
A reprlx(t)] AT
/] \
. 1. o AN
-;1‘ "T )t ¥ \d. ,L—) I: .bﬁ_*__)f

1/T
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