1.6.4 FAST FOURIER TRANSFORM (FFT)
ALGORITHM |

The FFT is an algorithm for efficient computation
of the DFT.

It is not a new transform.
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Recall

X(N)(k) = Nil x(n) e—i2mkn/N y — 0 1,.. N—1

n=0

Superscript (N) is to show length of DFT. For
each value of k, computation of X(k) requires:

N complex multiplications

N—1 complex additions
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Define a complex operation (CO) as 1 complex mul-
tiplication and 1 complex addition.

Computation of length N DFT then requires
approximately N? CO’s.
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To derive an efficient algorithm for computation of
the DFT, we employ a divide-and-conquer stra-

tegy.
Assume N is even.

xM(k) =5 x(a)e 2N

n=—
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x(N) (k)

N—1
by

n=

X(n)e—j27rkn/N

n even

N/2—1

—O

N—1
+ )
n=0

X(n)e——j27rkn/N

n odd

x(2

N/2—1

LY

m)e —j27k(2m)/N

X(Qm n 1)e—j27rk(2m—l-1)/N

m=0
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XN (k) = ! x(2m)ei2mkm/(N/2)

m=0
4 o—i2mk/N N/i—l x(2m —+ 1)eI2mkm/(N/2)
m=0
Let  xg(n) = x(2m), m=0,..,N/2 -1
x1(n) =x(2m + 1), m=0,.,N/2 -1
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Now have
XN (k) = XN2) (k) 4 732N xN2) () |
k =0,..,N—1

Note that XgN/ 2)(k) and X(lN/ 2)(k) are both
periodic with period N/2, while e 12mk/N g periodic
with period N.
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Computation

1. Direct

N? CO's

N2 /4 CO's
N2 /4 CO's
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XN (k) = XN (k) + 7327/ X2 (1K)
k =0,..,N—1
N CO’s

Total N?/2 + N CO's

For large N, we have nearly halved computation.
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Consider a signal flow diagram of what we have
done so far:
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If N is even, we can repeat the idea with each N/2

/
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IfN=2M , we repeat the process M times resulting
in M stages.

The first stage consists of 2 pt. DFT’s

X(z)(k) _ §13 x(n) e——j27rkn/2

n=>0
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Flow diagram of 2 pt. DFT
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Full Example for N = 8 (M = 3)
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Ordering of Input Data

Normal Order Bit Reversed Order
Decimal | Binary | Binary Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Computation (N = 2M)
M = logg N stages
N CO's/stage

Total: N logeg N CO's
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Complex Operations (CO)
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Comments

e The algorithm we derived is the decimation-in-
time radix 2 FFT.

— input in bit-reversed order
— in-place computation

— output in normal order

e The dual of it is the decimation-in-frequency
radix 2 FFT.

— input in normal order
— in-place computation

- — output in normal order
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The same approaches may be used to derive
either decimation-in-time or decimation-in-
frequency mixed radix FFT algorithms for any
N which is a composite number.

Another class of FFT algorithms is based on
fast techniques for performing small convolu-
tions (Winograd).

All FFT algorithms are based on composite N
and require O(N log N) computation.

The DFT of a length N real signal can be
expressed in terms of a length N/2 DFT.
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